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Supplementary Material

The supplementary material is structured as follows.
First, we show how our proposed method improves the
semi-static segmentation through negative motion fusion
(NMF) in Section A. Then we discuss the limitations of dy-
namic segmentation for egocentric videos and our attempt
to address them through layered motion fusion (LMF) and
test-time refinement (TR) in Section B. Next, we further in-
vestigate the precision of the motion segmentation predic-
tions and justify their fusion in Section C and Section D
respectively. Section E provides further results regarding
the generalizability of our method, and Section F analyses
its runtime. Section G briefly discusses broader impacts.

A. Improving semi-static segmentation
We have shown in the main paper that, besides improv-
ing the dynamic segmentation, our method also improves
the semi-static segmentation as well by making use of only
dynamic predictions of the 2D based segmentation model.
We achieve this by preventing the semi-static model from
predicting anything that has a dynamic (pseudo-) label as-
signed. We highlight the benefits in Figure 1. We see that
NMF removes artefacts from the semi-static layer such as
in row three. Additionally, NMF also reduces predictions
of dynamic objects such as the cutting board in row one and
the person in row two. As can be seen, such results cannot
be achieved by training with PMF only, as this loss does not
influence the semi-static layer directly.

B. Limitations of dynamic segmentation
The authors of the EPIC Fields [80] dataset observed that
the performance of state-of-the-art dynamic neural render-
ing methods strongly depends on the type of motion. Their
results show a significant gap in the reconstruction quality
between the dynamic and the static parts of videos, pointing
to the current limitations when handling dynamic objects.
This limitation also appears in the segmentation of dynamic
objects: While the 3D-based models from EPIC Fields out-
perform MG as a 2D baseline on the semi-static setting, they
all perform worse when used for the segmentation of dy-
namic objects. For example, they report a mean Average
Precision (mAP) score of 55.58 for NeuralDiff, while MG
achieves 64.27 – a significant gap of about 15%.

We hypothesize that this difference is caused by two fac-
tors. First, we observe that the semi-static model sometimes
captures dynamic objects as shown in Figure 3. The figure
shows that the model reconstructs the scene well in com-
parison to Figure 2, but it assigns the person and the object
they are holding incorrectly to the semi-static layer. To cir-

cumvent this problem, we make use of labels predicted from
a 2D motion segmentation method, and fuse them into the
3D model. This procedure regularises both layers (semi-
static and dynamic) of the model and helps specifically
the dynamic layer to learn about moving objects. Second,
the fusion of motion segmentation predictions can only be
achieved if the geometry is captured correctly. This means
that, for example, if the arms are not captured by the radi-
ance field, it is impossible to fuse motion into them as their
geometry is missing. Examples of failure cases are shown in
Figure 2. The red rectangles highlight the reconstruction of
dynamic objects and show a significant mismatch between
the predicted RGB image and the ground truth. This in turn
leads to a deterioration of the segmentation ability, since the
3D based model can only segment what it can reconstruct.
We address this issue through test-time refinement.

Aside from the challenges posed by dynamic segmenta-
tion with geometry, the task also proves to be a significant
hurdle for 2D-based supervised methods, such as EgoHOS
[99], as demonstrated in Tab. 4. While this model is trained
to segment hands and objects with specific supervision, it
achieves a lower score compared to our method. More re-
cent papers provide further evidence of the difficulty of seg-
menting dynamic objects in egocentric videos such as [2]
and [63].

C. Precision of motion segmentation output
We observe that the motion segmentation predictions are
unbalanced in terms of the false positive rate (FPR) and
false negative rate (FNR). An increase in FPR indicates that
the model is incorrectly labeling more negative instances as
positive, which would decrease the precision since it is neg-
atively impacted by an increase in FP (more false positive
predictions reduce the fraction of true positive predictions
among all positive predictions). While a high precision is
generally desirable for the fusion of labels, the negative fu-
sion loss benefits in particular from it, since the semi-static
model can only learn to ignore dynamic objects that are ac-
tually positives. An analysis of the error rates can be found
in Figure 5 and a qualitative visualization of the precision
of the motion segmentation predictions can be found in Fig-
ure 4.

D. Fusion of motion segmentation predictions
The work from [101] has shown that noisy or sparse la-
bels can be fused into 3D space through neural rendering in
static scenes. They observe that the accuracy of the fusion
decreases with a significant increase in noise and sparsity.
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Figure 1. Qualitative semi-static results for motion fusion. The segmentations are produced by NeuralDiff (ND), ND + PMF, and ND +
NMF. The positive motion fusion (PMF) loss does not prevent the semi-static layer from predicting dynamic objects. In comparison, the
negative motion fusion (NMF) loss removes artefacts from the semi-static predictions such as in row three. It especially removes anything
dynamic such as the cutting board in row one or the parts of the person and the bowl they are touching in row two.
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Figure 2. Missing geometry when segmenting dynamic objects. While the model is able to segment the semi-static components of
the scene, the dynamic one is rendered with less accuracy. This lack of geometric understanding of the dynamics of the scene hurts
segmentation, as the model can only segment objects whose geometry is captured.

For the case of fusing motion segmentation masks from a
2D-based model, such as MG [93], into a dynamic neural
rendering representation, we therefore require labels with
high precision. We analyze the FPR rate in Figure 5 and
note that MG rarely predicts positives incorrectly for vary-
ing thresholds. This observation is not only important for
the fusion of labels into a single layer (similar to Semantic-

NeRF [101]), but even more so when fusing them into two
layers as proposed in our method. While the dynamic layer
simply learns to predict the dynamic labels from the mo-
tion segmentation masks, the semi-static layer is penalized
for predicting anything that should belong to the dynamic
layer. As the semi-static layer learns to exclude the predic-
tions from the 2D-based segmentation model, the dynamic
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Figure 3. The semi-static layer captures dynamic objects incorrectly. We observe that the model segments dynamic components (the
person and the objects they are holding) incorrectly into the semi-static stream. This represents a significant limitation of dynamic neural
rendering methods. It can be resolved with the proposed layered motion fusion that integrates the predictions of a 2D based segmentation
into its 3D representation.
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Figure 4. Precision of motion segmentation predictions. The motion segmentation predictions have unbalanced error probabilities for
egocentric videos. We observe that the motion segmentation model is less likely to produce false positives and has a high precision as
shown in the ranking of samples with respect to their precision. We rank segmentations with the lowest precision from right to left in the
first three columns and those with the highest precision from left to right in the last three columns.

layer is forced indirectly to predict them instead. This re-
sults in a higher overall confidence either for the semi-static
model or the dynamic model. In comparison, applying only
one of the losses can result in predictions of the semi-static
and dynamic layer that have equal confidence (probability
of 0.5), as the segmentation itself depends on the rendering
with multiple layers as defined in the rendering equations
from [78]. Another positive side-effect of the layered mo-
tion fusion is that the semi-static model improves as well,
as shown in the results, by making use of only dynamic la-
bels from the 2D-based model. Qualitative examples are
visualized in Figure 1.

E. Generalizability of semi-static component
The methods NeRF-W [48] and NeRF-T [21] are not de-
signed for segmenting semi-static objects, and therefore
lack a semi-static layer. This results in a lower performance,
because we cannot apply NMF. We chose the architectures
from EPIC Fields [80] for a fair comparison, but extend
them to show the generalizability of our method. We add a
semi-static layer similar to that used in NeuralDiff. The re-
sults, reported in Table 6, are extensions of the experiments

Table 6. Application to different 3D baselines. We report the
mean average precision (mAP) on segmenting the dynamic (Dyn)
and semi-static (SS) components of the scene, and also their union
(SS+Dyn). We modify NeRF-W and NeRF-T to a three-layer ar-
chitecture (indicated by →), which enables us to apply LMF (i.e.
PMF+NMF) as opposed to PMF only (Table 2 from main paper).

Method Dyn SS Dyn+SS

NeRF-W [48] 28.5 20.9 45.6
+ TR + PMF 34.2 (20.0%) 19.8 (-5.3%) 47.3 (3.7%)
+ TR + PMF → 34.5 (21.1%) 21.1 (+1.0%) 48.2 (5.7%)
+ TR + PMF + NMF → 36.6 (28.4%) 21.6 (+3.3%) 49.4 (8.3%)

NeRF-T [20] 44.2 24.4 64.9
+ TR + PMF 51.1 (15.6%) 23.2 (-4.9%) 68.8 (6.0%)
+ TR + PMF → 52.9 (19.7%) 24.7 (+1.2%) 69.2 (6.6%)
+ TR + PMF + NMF → 56.1 (26.9%) 25.5 (+4.5%) 69.9 (7.7%)

from Table 2 and Table 5 in the main paper. We observe
that the semi-static layer improves the performance on its
own. Adding NMF improves the performance of NeRF-W
and NeRF-T for all types of motion (including semi-static)
even further, similar to its application in NeuralDiff.
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Figure 5. Analysis of true positives from motion segmentation
predictions. (a) We observe that the probabilities from the mo-
tion segmentation method are unbalanced in terms of the false
positive rate (FPR) and false negative rate (FNR). The model is
rarely predicting positives incorrectly for varying thresholds. (b)
The precision-recall curve inclines towards the top right and sug-
gests that the motion segmentation method is highly effective in
differentiating between the positive and negative classes.

F. Runtime analysis

The fine-tuning takes about 22 minutes for 100 frames or
about 13 seconds per frame. The rendering of a frame
without fine-tuning takes about 5 seconds. Therefore, the
required time for rendering would increase to 18 seconds
with the fine-tuning. Given that, our method improves the
mAP score by up to 30%. The runtime could be signifi-
cantly reduced to a fraction of its current value by adopting
a more advanced architecture, such as Gaussian Splatting
[29], though this would require a non-trivial adaptation.

G. Broader impact
This method, because of potential applications in aug-
mented reality, could have some positive impact as it could
be used within an AI assistant. There are also potential
drawbacks to such technologies, since improved AR tech-
nologies could potentially be exploited for deceptive pur-
poses.


