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7. Experimental Settings

7.1. Learning Rate

The trainable network in the A4A framework is divided into
three components, each with distinct learning rate hyperpa-
rameters L. These components, highlighted in Fig. 1, cor-
respond to the following:
• L1: Learnable features (K̄ and V̄ ), along with the

feature-learning mechanism (depicted within the black
dashed rectangle that repeats R times).

• L2: Networks responsible for alignment and projection
(represented by the orange blocks in Fig. 1).

• L3: The PTA3, which can be optionally fine-tuned within
A4A (represented by the pink blocks).

In all the complete A4A experiments mentioned above, we
set L1 = 1 × 10−4, L2 = 1 × 10−5, and L3 = 1 × 10−5.
In the following, we analyze the ablation experiments re-
garding the learning rate. Based on insights from previous
research, L1 selects a value between 1×10−4 and 1×10−5.
Firstly, we set L1 to 1×10−4 while keeping the PTA frozen
(i.e., without fine-tuning). For L2, we evaluate three values:
1 × 10−4, 1 × 10−5, and 1 × 10−6. The results in Fig. 9
indicate that the A4A (without fine-tuning PTA), achieves
better convergence when L2 is set to a smaller value. Thus,
L2 selects from 1× 10−5 and 1× 10−6.
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Figure 9. The performance of A4A (ours) without fine-tuning the
PTA is shown with L1 = 1× 10−4.

As shown in Fig. 10, the configuration with L2 = 1 ×
10−5 and L1 = 1×10−4 achieves optimal performance. For
fine-tuning the PTA, which in our work corresponds to the
IP-Adapter [40], the learning rate of the PTA is set to L3 =
1×10−5 following the configuration of the IP-Adapter. The
above experiments are conducted with a resolution of 1024
and a batch size of 8.

3pretrained Adapter from the base model
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Figure 10. The performance of A4A (ours) without fine-tuning the
PTA is presented with L1 = 1 × 10−4 and 1 × 10−5, as well as
L2 = 1× 10−5 and 1× 10−6.

7.2. The Balancing Parameter λ

λ in the Eq. (13) is a hyperparameter that balances the
mapped features and original features. During the train-
ing process, we set λ as 1.0 for all experiments. For in-
ference, in the task of ID customization, the balancing pa-
rameter is also set to 1.0, consistent with the setting used
for the PTA. In the task of IP customization, we report the
text-image similarity (CLIP-I) and image-image similarity
(CLIP-T) with different values of λ, ranging from 0.4 to 1.0
as shown in Fig. 11. For inference, we report the results
with λ = 1.0 and L3 = 1× 10−5 in Tab. 1. At the point of
reporting, the CLIP-I of A4A (ours) is comparable to that of
the pretrained adapter from the upgraded model. The above
experiments are conducted with a resolution of 1024 with a
batch size of 8.
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Figure 11. The performance of λ is evaluated across a range from
0.4 to 1.0. The line with points represents the setting where L3 =
1×10−5, while the line with stars corresponds to the setting where
L3 = 1× 10−6. L1 = 1× 10−4, and L2 = 1× 10−5.

7.3. Analysis of Coupling Space Dimensions
As outlined in section Coupling Space, the module projects
adapter features into a coupling space with a dimension
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Figure 12. The visualization of the training process when transferring the pretrained IP-Adapter to Pixart-α, referred to as A4A (ours), is
compared with that of the IP-Adapter trained from scratch, denoted as IP-Adapter*. The left and right sides present the generated results
for males and females, respectively.

equal to the Smallest Common Multiple (dscm), ensur-
ing both efficiency and effectiveness. To validate this de-
sign, we conduct experiments with coupling space dimen-
sions scaled to 0.5 × scm and 2 × scm. The results, il-
lustrated in Fig. 13, demonstrate that using 2 × scm not
only increases computational overhead but also reduces
the adapter’s transfer efficiency. Conversely, reducing the
dimension to 0.5 × scm compresses the features exces-
sively, causing information loss and degraded learning per-
formance compared to dscm.
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Figure 13. Results for coupling space dimensions of 0.5 × scm,
scm, and 2× scm are presented, with all other settings consistent
with those described in the Learning Rate section.

8. Ablation Experiments
8.1. The Ablation Study of Fine-tuning PTA
In Fig. 8, we present the experiments involving fine-tuning
PTA or not, with SDXL as the upgraded model. We present
similar experiments with Pixart-α as the upgraded model,

comparing the effects of fine-tuning the PTA. As shown
in Fig. 14, whether fine-tuning the PTA or not does not show
a significant difference in terms of performance on IDA.
Both configurations are notably better than the baseline (IP-
Adapter*, the IP-Adapter trained from scratch). This in-
dicates that the Coupling Space Projection and Upgraded
Space Mapping modules we proposed are indeed beneficial
for the transfer of the adapter.
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Figure 14. The ablation study of fine-tuning the PTA (IP-Adapter)
is presented. The A4A without fine-tuning the PTA is labeled as
A4A(ours w/fine-tuning).

8.2. The Variation of Projection And Alignment
To demonstrate the necessity of each technical aspect in
A4A (ours), we compare it with a naive approach. The ex-
periments are conducted at a resolution of 512 with a batch
size of 8. In A4A, we use a linear layer for Projection and
Alignment to ensure dimensional compatibility between the
coupling space and the upgraded space. We evaluate varia-
tions of Projection and Alignment that achieve dimensional



alignment through training-free methods, specifically inter-
polation for Projection and average pooling for Alignment.
As shown in Fig. 15, aligning the key and value features to
the coupling space aids in the adapter’s transfer. Addition-
ally, the training-based Alignment and Projection methods
outperform the training-free ones.
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Figure 15. The results using training-free layers (i.e., interpolation
and average pooling for Projection and Alignment Module) are
shown, labeled with green line.

8.3. Feature Learning with Linear Layers
A4A (ours) adopts Attention-driven architectures, consist-
ing of cross-attention layers and feed-forward networks
(FFN). To demonstrate the necessity of the Attention-driven
method, we replace the cross-attention block with linear
layers that map the original feature K and V to K̄ and V̄ .
The following experiment is conducted with a resolution of
512 and a batch size of 8. We conduct two experiments
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Figure 16. The results of replacing the Attention-driven feature
learning mechanism with linear layers (labeled with green and
blue lines) are compared to those of A4A (ours) (labeled with red).

with learning rates for the linear layer set to 1 × 10−4 and
1 × 10−5, labeled as linear, 1e-4 and linear, 1e-5, respec-
tively. As shown in Fig. 16, the results obtained from linear
feature learning are noticeably weaker compared to those
from the Attention-driven blocks.

9. Visualization of Training Process
We visualize the training process in Fig. 12, where time
is denoted by STEP. The experiment is conducted on two
A100 GPUs with a batch size of 8, so SC=240K corre-
sponds to STEP=30K. We show the training processes for
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Figure 17. The visualization of the training process of transferring
PTA to SDXL.
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Figure 18. Visulization of transferring InstantStyle for stylization.

a woman (left) and a man (right). The image within the or-
ange frame represents the generated reference image, while
the text on either side corresponds to the text prompts.
We generate images based on reference images and text
prompts with 4 different random seeds. Through this vi-
sualization in Fig. 12, it is clear that the training of the
IP-Adapter has significantly accelerated convergence with
the assistance of A4A. We also visualize the training pro-
cess of transferring to SDXL as the upgraded model. To
more clearly visualize facial features, we include the phrase
close-up face in the text prompt. As shown in Fig. 17, start-
ing from STEP=30K, the facial similarity between the ref-
erence image and generated images shows an improvement.
As training progresses, the facial feature similarity contin-
ues to improve, and the details appear more natural.

10. Style Transferring
We conduct adapter transferring on InstantStyle [33] using
A4A, with settings identical to those of IP customization.
Fig. 18 shows that our approach achieves comparable re-
sults with limited training cost.
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