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In this supplementary material, we present a visualiza-
tion of our uniformly predefined and further upsampled
Gaussians in Sec. 6, run-time analysis of each part in Sec. 7,
and qualitative and quantitative results on real data in Sec. 8.

6. Visualization of Mesh-anchored Gaussians

We evaluate the effectiveness of our mesh-anchored Gaus-
sian in this section.

Figure 8. Visualization of uniform Gaussian Primitives. From
left to right, (a) rendering result, (b) the ratio between the primary
axis scale and the secondary axis scale, hot red stands for a large
ratio while cold blue means a small ratio, (c) highlight long stringy
Gaussian surfel along texture margin.

Predefined Uniform Gaussian Primitives. As mentioned
in Sec. 3.2 of the main paper, some space related Gaus-
sian components such as position and rotation are prede-
fined once the geometry is reconstructed. Fig. 8 illustrates
that the primary axis of uniformly distributed Gaussian sur-
fel is orthogonal to texture gradient direction, and the ratio
between the primary axis scale and the secondary axis scale
depends on the difference of texture variance.

Upsampled Gaussians via subdivision. We leverage high-
frequency input textures to subdivide Gaussians on each
surfel, as mentioned in Sec. 3.3 of main paper. Accord-
ing to Eq. 13 of main paper, we first select visible points
in different input views by maximizing the inner product of
orientation of Gaussian surfel and surface normal, for ex-
ample, green point means that this point is more visible in
the front view as shown in Fig. 9(b), while blue and red
parts mean the visible points in right and left view. Then
we calculate the color variance on the input image to deter-
mine which patch should be subdivided, for example, the

@
Figure 9. Subdivision process. From left to right, (a) rendering
result, (b) view selection according to geometry normal, (c) high-
light of the rich texture, and (d) scale distribution, cold color de-
notes small scale while hot one represents large scale.

Part Time (ms)
Geo. image encoder £y, 24
Geo. feature vol. & 3D net £3¢, 22
Geo. cross-attn & SDF regression 11
Coarse mesh extraction 5
RAFT decoding 71
Poisson fusion 50
Fine mesh extraction 7
Gaussian image encoder &, 68
Guassian feature vol. & 3D net £3¢, 35
Gaussian components regression 16
Gaussian upsampling via subdivision 49
Total 358

Table 5. Run-time breakdown of our pipeline.

light part denotes the rich texture region in Fig. 9(c). Af-
ter subdivision, the cold blue area in Fig. 9(d) denotes the
well subdivided patches with small scales with respect to
large-scale Gaussians in red area.

7. Run-time Breakdown

Our method consumes around 20G video memory during
inference, which is able to fit in consumer-grade graphics



DNA-Rendering THuman Twindom 2K2K

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
2DGS(4)* 16.01 0.654 0443 20.01 0.813 0275 1835 0.710 0322 20.74 0.804 0.285
2DGS(8)* 17.63 0.719 0363 27.50 0908 0.146 23.60 0.812 0.202 26.77 0.894 0.163

DoubleField(4) 2036 0.827 0.274 1982 0.866 0.300 1951 0.777 0374 19.65 0.839 0.265
DoubleFiled(8) 2049 0.831 0271 1996 0.870 0.296 19.75 0.782 0.369 19.75 0.843 0.259

GPS-Gaussian(6)" — — — 19.92  0.835 0241 2028 0.795 0267 21.16 0.839 0.216
GPS-Gaussian(8)  21.28 0.840 0.209 24.62 0902 0207 2395 0850 0.222 2580 0911 0.162
GHG4) 18.62 0.787 0.302 1899 0.836 0.299 1659 0.716 0403 18.10 0.801 0.281
GHG(8) 18.55 0.784 0307 19.05 0.834 0304 16.61 0.714 0409 1811 0.798 0.285
Ours 2239 0.851 0202 2551 0920 0.108 24.10 0.845 0.138 2538 0909 0.136

Ours(Subdiv.) 2253 0.853 0.198 2573 0921 0.107 2427 0.848 0.131 2581 0917 0.118

Table 6. Quantitative comparison of novel-view rendering on real data DNA-Rendering and synthetic data THuman, Twindom and 2K2K
with 2DGS, DoubleField, GPS-Gaussian and GHG.

cards. The breakdown of the running time for our pipeline
is shown in Tab. 5, which is tested with an NVIDIA RTX
4090. We note that the majority of time is spent running fine
explicit geometry reasoning and Gaussian parameter regres-
sion, while our upsampling technique takes relatively little
time in Tab. 5.

8. More Results

As mentioned in Sec. 4.1 of the main paper, we prepare
150 synthetic scan data from THuman [80], Twindom [1],
and 2K2K [7] datasets as validation set. To test the robust-
ness of our method on real data, we additionally collect real-
captured data of 200 characters from DNA-Rendering [9],
which would retain imperfects of camera calibration, white
balance, and foreground matting. For rendering result, we
further compare with human-template based GHG [30] and
NeRF-based DoubleField [58], besides optimization-based
2DGS [23] and depth-based GPS-Gaussian [84] in main pa-
per. We note that GHG [30] requires a human template,
SMPL-X [48], fitting and it is not trivial to fit SMPL-X un-
der sparse views. We do our best to reproduce GHG on our
collected real data, however, GHG is not able to generate
a reasonable rendering of characters wearing loose cloth-
ing in Fig. 10(d). We also note that we evaluate Double-
Field in a feed-forward way for fair comparison of other
generalizable methods. Therefore the rendering results of
DoubleField in Fig. 10(b) and 11(b) are blurry due to the
lack of specific fine-tuning on each character. In Tab. 6
our method outperforms the other methods, especially on
real data DNA-Rendering with the global perception ori-
ented LPIPS metric. In addition, GPS-Gaussian is only
evaluated with an 8-input-camera setting due to the camera
sparsity of DNA-Rendering, and it can not avoid artifacts
of marginal regions in Fig. 10(c) and Fig. 11(c) due to its
partial geometry representation. When using sparse views
as input, the optimization-based 2DGS could be overfitted
to input views, thus renderings are degraded in novel views
as shown in Fig. 10(a).
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Figure 10. Qualitative comparison on real data DNA-Rendering. From left to right, (a) 2DGS, (b) DoubleField, (c) GPS-Gaussian, (d)
GHG, (e) Ours, and (f) Ground Truth. All methods are under an 8-camera setting, while our method takes 4 pairs of stereo cameras.
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Figure 11. Qualitative comparison on synthetic data. From left to right, (a) 2DGS, (b) DoubleField, (c) GPS-Gaussian, (d) GHG, (e) Ours,
and (f) Ground Truth. All methods are under an 8-camera setting, while our method takes 4 pairs of stereo cameras.
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