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A. Contamination and Synthetic Validity
Fig. 8 highlights the performance of MiniGPT-4 and In-
structBLIP on discriminative tasks across COCO 2014, In-
ternet, and ODE-generated datasets. Internet data, as the
most recent and reliably crawled dataset, avoids contami-
nation, making it a more trustworthy baseline compared to
COCO 2014, which shows artificially inflated results due to
potential overlaps with training data. While ODE-generated
synthetic data exhibits slightly lower performance than In-
ternet data, feature space validates the close similarity be-
tween synthetic and natural images. This confirms that syn-
thetic data can effectively replicate real-world distributions.
Moreover, its controllability and distribution diversity es-
tablish it as a valuable resource for evaluating model re-
liability, particularly in mitigating data contamination and
enabling the creation of novel and challenging testing sce-
narios.
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Figure 8. Model performances on discriminative tasks.

The degradation results primarily indicate potential
data contamination in certain models. Since the Inter-
net and synthetic images do not share entirely identi-
cal semantics, some degree of discrepancy is expected
due to differences in specific concepts within the images.
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Figure 9. Feature Visual-
ization.

We compared the features
of three types of images:
real images before contami-
nation, contaminated images,
and synthetic images gener-
ated on the basis of detailed
semantic descriptions. The
visualization shows that con-
taminated images form a dis-
tinct distribution, while syn-
thetic images align closely
with uncontaminated real images. Thus, we conclude that
synthetic images are suitable for hallucination evaluation, a
perspective also supported by previous works [27].

B. Evaluation Results
Table 6 summarizes the detailed evaluation results of five
models under the following conditions: Standard, Random,
Fictional, and Long-tail distributions. Tables 7, 8, 9, and 10
present the evaluation results of object-level hallucinations
on ODE at the attribute level.

From the detailed results, we derive the following key
observations:
• High Variability Across Attributes: Models excel in state-

related attributes due to strong semantic associations in
training data. However, action and number attributes ex-
pose significant weaknesses, especially in rare or unseen
scenarios.

• Impact of Data Distribution: Standard distributions en-
able high performance as a result of frequent exposure
during training. In contrast, Fictional and Random distri-
butions cause sharp performance declines, exposing over-
reliance on memorized correlations. Long-tail distribu-
tions further highlight the models’ inability to generalize
effectively to sparse data.

• Task-Specific Limitations: Generative tasks emphasize
semantic fluency, whereas discriminative tasks require
detailed attribute recognition. These differences result in
varying performance gaps between task types.

• Model-Specific Trends: LLaVA-1.5 demonstrates the
best overall performance with balanced precision and
recall across attributes and distributions. InstructBLIP
achieves high precision but suffers from poor recall, in-
dicating a tendency toward overfitting. MiniGPT-4 and
mPLUG-Owl struggle significantly with generalization,
particularly in Random and Fictional contexts.

• Broader Implications for Hallucination Mitigation: Ad-
dressing relational hallucination requires improving the
diversity and balance of training datasets. Attribute-
specific fine-tuning and robust data augmentation strate-
gies are essential for better generalization.



Table 6. Evaluation results of five models (CogVLM, LLaVA-1.5, mPLUG Owl, MiniGPT-4, and InstructBLIP) under the following
conditions: Standard, Random, Fictional, and Long-tail distributions. Each task type—Generative Task (CHAIR, Cover, Hal, Cog) and
Discriminative Task (Existence and Attribute)—is evaluated with Accuracy (Acc), Precision (P), Recall (R), and F1-score (F1).

Generative Task Discriminative-Existence Task Discriminative-Attribute Task

Criterion Model CHAIR Cover Hal Cog Acc P R F1 Acc P R F1

Standard

CogVLM 51.9 76.5 89.1 12.2 50.7 100.0 26.2 41.5 55.2 46.8 55.6 50.8
LLaVA-1.5 38.9 77.7 82.7 8.6 69.5 97.8 55.4 70.7 62.9 32.6 71.9 44.8
mPLUG 50.8 77.2 96.0 11.5 41.7 94.7 13.4 23.5 72.5 41.7 28.6 33.9
MiniGPT-4 49.4 76.0 93.6 14.2 64.5 97.5 48.0 64.3 69.5 39.7 12.5 19.0
InstructBLIP 59.9 75.7 88.1 11.0 66.7 96.8 51.7 67.4 60.8 28.5 51.2 36.6
InternVL-2.5 38.5 60.9 72.3 4.0 75.7 96.1 66.3 78.4 65.9 48.1 87.0 61.9
Qwen2-VL 44.2 75.2 88.6 11.6 75.2 97.0 64.9 77.7 67.0 49.6 86.8 63.1
Cambrian 36.3 64.9 79.2 7.3 76.9 96.5 67.8 79.6 65.7 47.7 90.4 62.4

Random

CogVLM 58.1 57.7 87.6 6.0 40.0 89.7 18.0 30.0 57.1 82.5 38.2 52.2
LLaVA-1.5 45.2 57.7 84.2 4.7 74.7 89.7 69.6 78.3 75.7 90.1 65.9 76.1
mPLUG 57.9 56.4 92.1 6.3 40.0 84.0 10.8 19.1 48.4 76.5 20.2 31.9
MiniGPT-4 50.3 57.9 82.2 5.8 66.4 86.9 58.2 69.7 45.0 74.5 10.8 18.8
InstructBLIP 55.9 58.4 83.2 5.6 64.6 87.6 54.6 67.2 72.3 91.5 58.6 71.4
InternVL-2.5 43.0 58.4 67.8 3.7 81.4 89.9 80.7 85.0 72.8 67.0 80.6 73.1
Qwen2-VL 38.5 60.9 72.3 4.0 82.8 88.8 83.5 86.0 71.4 65.8 82.6 73.2
Cambrian 30.9 56.9 61.4 2.3 80.7 87.0 83.0 84.9 71.2 63.4 84.3 72.3

Fictional

CogVLM 54.0 55.9 80.7 6.3 39.5 90.9 16.1 27.3 50.5 75.4 28.7 41.5
LLaVA-1.5 48.0 54.2 79.2 4.8 72.5 87.9 66.7 75.8 73.0 88.5 62.0 72.9
mPLUG 59.2 54.0 90.6 6.6 42.5 95.7 11.8 21.0 45.8 72.1 17.4 28.0
MiniGPT-4 48.0 55.4 79.2 7.3 67.1 87.4 58.1 69.8 42.9 75.0 9.7 17.2
InstructBLIP 59.7 56.9 80.2 5.9 66.0 88.6 56.2 68.7 71.0 88.8 58.4 70.4
InternVL-2.5 43.7 55.4 65.3 4.5 78.6 86.5 79.3 82.7 66.2 58.0 73.7 64.9
Qwen2-VL 41.5 60.4 69.8 5.3 77.2 86.6 76.6 81.2 65.8 59.0 75.0 66.0
Cambrian 34.5 55.0 63.4 3.4 79.1 86.6 80.1 83.2 67.1 58.3 77.2 66.4

Long-tail

CogVLM 54.8 67.1 89.6 14.3 41.4 90.0 15.6 26.6 61.5 77.3 49.0 59.9
LLaVA-1.5 44.5 71.3 91.1 11.2 51.3 84.7 32.9 47.4 78.2 85.5 74.3 79.5
mPLUG 51.9 71.0 96.0 10.7 38.1 91.4 7.9 14.5 48.9 67.4 24.8 36.2
MiniGPT-4 48.1 75.2 93.1 16.5 63.4 92.9 48.8 63.9 48.0 75.9 17.1 27.9
InstructBLIP 51.3 71.0 87.1 11.2 51.5 91.1 30.4 45.6 73.3 84.6 65.1 73.5
InternVL-2.5 50.4 70.3 86.1 11.1 70.1 88.1 63.9 74 65.2 50.5 89.7 64.6
Qwen2-VL 49.8 72.3 93.1 16.7 69.3 92.2 58.9 71.8 61.4 48.2 82.9 60.9
Cambrian 45.0 53.0 80.7 9.0 68.5 89.6 59.7 71.6 60.8 47.0 88.7 61.4

Table 7. The detailed evaluation results of ODE on the object hal-
lucination (attribute-level) under Standard distribution.

Metric mPLUG-Owl MiniGPT-4 LLaVA-1.5 CogVLM InstructBLIP

State

Acc 57.8 51.3 80.5 69.5 71.3
P 75.3 84.2 86.8 87.0 86.8
R 28.6 12.5 71.9 55.6 51.2
F1 41.4 21.7 78.6 67.8 64.4

Number

Acc 40.4 39.9 92.6 54.5 87.0
P 82.7 93.5 80.2 98.4 98.5
R 15.3 10.6 90.3 32.7 81.9
F1 25.8 19.0 94.1 49.1 89.4

Action

Acc 53.3 43.9 66.9 60.1 67.3
P 67.8 45.8 74.2 66.9 74.5
R 17.5 9.6 51.8 51.3 52.6
F1 27.8 15.8 61.0 58.0 61.6

Table 8. The detailed evaluation results of ODE on the object hal-
lucination (attribute-level) under Long-tail distribution.

Metric mPLUG-Owl MiniGPT-4 LLaVA-1.5 CogVLM InstructBLIP

State

Acc 55.7 50.5 75.5 66.1 64.2
P 69.1 71.4 82.5 84.3 74.6
R 32.2 13.7 64.7 53.4 43.2
F1 43.9 23.0 72.5 65.3 54.7

Number

Acc 40.1 42.4 86.8 49.8 83.7
P 78.9 85.7 95.5 91 97.2
R 14.9 16.3 94.2 27.5 78
F1 25 27.44 89.4 42.2 86.5

Action

Acc 48.5 51.9 64.4 61 64.4
P 50.7 62.8 64.2 61.8 64.6
R 27.3 20.5 65.2 71.2 63.6
F1 35.4 30.9 64.6 66.1 64.0



Table 9. The detailed evaluation results of ODE on the object hal-
lucination (attribute-level) under Fictional distribution.

Metric mPLUG-Owl MiniGPT-4 LLaVA-1.5 CogVLM InstructBLIP

State

Acc 51.3 50.2 71.1 55.0 66.4
P 67.5 76.5 87.7 84.4 85.7
R 22.4 11.2 49.1 28.0 41.4
F1 33.6 19.5 62.9 42 55.8

Number

Acc 39.9 35.8 76.9 46 73.4
P 85.7 72.7 91.5 86.6 93.6
R 13.4 5.9 72.0 24.0 65.1
F1 23.2 10.9 80.5 37.6 76.7

Action

Acc 45.7 46.7 56.5 42.4 57.6
P 30.0 90.9 60. 0 46.5 62.5
R 6.5 21.7 39.1 43.5 43.5
F1 10.7 35.0 47.3 44.9 51.2

Table 10. The detailed evaluation results of ODE on the object
hallucination (attribute-level) under Random distribution.

Metric mPLUG-Owl MiniGPT-4 LLaVA-1.5 CogVLM InstructBLIP

State

Acc 55.0 53.5 71.9 60.3 66.1
P 76.4 78.3 86.3 85.0 87.5
R 22.7 14.9 52.1 39.7 40.5
F1 35.0 25.0 64.9 54.1 55.3

Action

Acc 40.9 36.8 80.4 48.0 75.2
P 79.8 78.4 92.5 87.2 95.0
R 16.6 7.2 76.7 27.0 66.8
F1 27.5 13.2 83.8 41.2 78.4

Number

Acc 54.7 45.3 54.7 65.6 60.9
P 75 0 75 76.9 76.9
R 18.7 0 18.7 62.5 31.2
F1 29.9 0 29.9 68.9 44.3
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