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6. Limitations and Future Work.
The training data in SGD consists of ERA5 and GridSat.
However, SGD serves as a versatile framework that could
incorporate more modalities such as other reanalysis data,
observations from polar-orbiting satellites, sounding and
radar data. Once these systematic data are all integrated
into SGD, more accurate weather conditions near the sur-
face can be achieved.

7. Preliminary
Unconditional diffusion model, proposed by [18], is a pow-
erful generative model composed of a forward process and
a reverse process. The former aims to gradually introduce
random Gaussian noise into the original images over T dif-
fusion steps, ultimately resulting in pure Gaussian noise
xT ∼ N (0, I). The latter, being the reverse of the for-
ward process, intends to denoise and sample the generated
images from the pure Gaussian noise through a pre-trained
noise estimation network.

The forward process is a Markov chain without learnable
parameters. The denoising method for each step is defined
by the following equation, where βt refers to the variance
of the forward process, which is experimentally set as a hy-
perparameter solely dependent on the diffusion steps t.

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (7)

For each steps in the reverse process p(xt−1|xt) =
N (xt−1;µθ(xt, t),ΣθI), the mean of the distribution is
hard to compute directly as the forward process. Conse-
quently, we necessitate the utilization of a neural network
with parameter θ to estimate the noise inherent within the
image xt. By employing Bayes theorem, we can express
the mean and variance of the reverse process as follows:

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (8)

Σθ(xt) =
1− ᾱt−1

1− ᾱt
βt, (9)

Among them, ϵθ(xt, t) represents the noise estima-
tion function, which is pre-trained by utilizing the low-
resolution ERA5 maps. It performs real-time estimation
and simulation of the noise contained within the maps,
thereby enabling denoising to sample xt−1. The uncondi-
tional diffusion model is trained utilizing maximum likeli-
hood estimation, with the objective for each training itera-

tion defined as follows:

Eϵ∼N (0,I),t∼[0,T ][∥ϵ− ϵθ(xt, t)∥2]. (10)

8. Patch-based Methods

The scale of the ERA5 maps used as input for SGD reaches
25km×25km. To address the downscaling task at this reso-
lution, we employed a patch-based method during the sam-
pling process of the conditional DDPM. The detailed intro-
duction of this method is shown in Algorithm 2, the patch-
based method partitions the low-resolution ERA5 maps into
several sub-regions based on a fixed stride and size. For
each individual sub-region, the gradient term of the dis-
tance loss between the ERA5 maps obtained from convo-
lution kernels and the corresponding low-resolution sub-
region map is computed separately. Subsequently, the mean
of the Gaussian distribution and the parameters of the con-
volution kernels in each sub-region are updated based on
these gradient terms. The overall map is then updated by
averaging the updated values across all sub-regions, each
weighted by a binary patch mask that quantifies the regional
scope, thereby refining the overall mean and convolution
kernel parameters of the sampled high-resolution ERA5
map, resulting in smoother generated maps. By leveraging
this strategy, SGD is capable of downscaling ERA5 maps to
any desired resolution, further enhancing the practicality of
the model.

9. Pre-trained Encoder

Before utilizing cross attention for feature fusion, SGD ne-
cessitates the extraction of features from GridSat maps by
an encoder. The pre-trained encoder aims to enhance the
feature extraction capabilities of SGD and its downscaling
performance. The pre-trained module comprises two com-
ponents: the encoder and a decoder of symmetric structure.
The former is utilize to extracte features from GridSat maps
into latent space, while the latter aims to reconstruct the
encoder’s outputs. The encoder module consists of several
convolutional layers, employing 3×3 convolutional kernels
with a padding of 1, elevating the GridSat maps’ channel
count to 64. Similarly, the decoder also encompasses con-
volutional layers, responsible for the reconstruction of the
extracted features, the detailed structure is shown in Fig. 6.
The training objective is to minimize the MSE loss between
the input GridSat maps and the output maps post-decoder,
with the total training epochs approximating 100.
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Algorithm 2 Patch-based Methods of SGD: Guided diffu-
sion model with the guidance of low-resolution ERA5 map
z. Given a conditional diffusion model pre-trained on ERA5
and GridSat maps ϵθ(xt, y, t).
Input: Conditional input GridSat satellite observation map y,

low-resolution ERA5 map z. Downscaling convolutional ker-
nel D with parameter φ. Pre-trained encoder module f with
parameter ϕ. Learning rate l and guidance scale s. Distance
measure function L. Overlapping patch stride r, overlap-
ping patch size v = 720 × 1440. Overlapping patch set K,
each patch commences its traversal from the top-left block of
the 720 × 1440 grid on the maps, progressing sequentially
with a displacement of stride r. A binary patch mask set{
P k

}
, k ∈ K.

Output: Output high resolution ERA5 map x0.
1: Sample xT fromN (0, I)
2: y′ = fϕ(y)
3: for all t from T to 1 do
4: x̃0 = xt√

ᾱt
−

√
1−ᾱtϵθ(xt,t)√

ᾱt

5: for all i from 1 to |K| do
6: Lφi,x̃0

= L(z ◦ P i,Dφi

(x̃0 ◦ P i))
7: φi ← φi − l∇φiLφi,x̃0

8: x̃i
0 ← x̃i

0 − s(1−ᾱt)√
ᾱt−1βt

∇x̃0Lφi,x̃0

9: µ̃i
t =

√
ᾱt−1βt

1−ᾱt
x̃i
0 +

√
ᾱt(1−ᾱt−1)

1−ᾱt
xt

10: end for
11: φ = 1

|K|
∑|K|

j=1 φ
j ◦ P j

12: µ̃t =
1

|K|
∑|K|

j=1 µ̃
j
t ◦ P j

13: β̃t =
1−ᾱt−1

1−ᾱt
βt

14: end for
15: Sample xt−1 fromN (µ̃t, β̃tI)

return x0
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Figure 6. Overall architecture of the encoder and decoder modules
used in SGD.

10. Additional Visualization Results
In this section, we present the downscaling results of SGD
for the variables V10 and MSL. Fig. 7 shows that SGD
exhibits more faithful details in the maps as compared to
interpolation-based and diffusion-based methods. Further-
more, SGD exhibits no discernible disparity in overall in-
tensity when compared to ERA5 at a scale of 25km×25km.
Combining the results of the other two variables in the main
text, it is validated that SGD is capable of producing highly
satisfactory downscaling results across all four variables.

11. Station observation-guided downscaling
bias with stations in Weather2K

In this section, we endeavor to integrate the MSE loss from
ERA5 LR maps and MAE loss from the observation sta-
tions in Weather5K within the distance function utilized in
the sampling process. Subsequently, we evaluated the high-
resolution ERA5 maps derived from SGD with this setting
across all stations within the Weather2K dataset, thereby
further assessing the efficacy of the guided sampling and
the accuracy of the downscaling results.

Weather2K dataset [46] is a benchmark dataset that aims
to address the shortcomings of existing weather forecast-
ing datasets in terms of real-time relevance, reliability, and
diversity, as well as the critical impediment posed by data
quality. The data is available from January 2017 to August
2021. It encompasses the meteorological data from 2130
ground weather stations across 40896 time steps, with each
data incorporates 3 position variables and 20 meteorologi-
cal variables.

Specifically, we incorporate the MAE loss between the
generated HR ERA5 maps and station observations from
the Weather5K dataset [15] with equal weights into our dis-
tance function to measure bias. Subsequently, we calcu-
late the biases between the downscaling results obtained
under this setting with the meteorological data at the sta-
tions from the Weather2K dataset. The evaluation metrics
we employed are the MSE and MAE loss of the variable
T2M .

We compared our results with those of interpolation-
based and diffusion-based methods using the same metrics.
As shown in Tab. 5, the discrepancy between ERA5+station
guided SGD and Weather2K stations is smaller, indicating
that using ERA5 and Weather5K with equal weights as the
distance function yields more ideal downscaling results for
stations beyond Weather5K.

Fig. 8 illustrates the differences in downscaling re-
sults among various methods at parts of the stations within
Weather2K, with darker colors indicating smaller discrep-
ancies at the stations. In terms of the bias between the
downscaled results at the station locations in the image and
the actual observations, SGD with mixed guidance down-
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Figure 7. Visualization comparison of different interpolation-based and diffusion-based downscaling results in various time stamps. We
use different colors to distinguish V10 and MSL.

scaling results has less extreme bias stations, which is sym-
bolized as yellow-labeled stations. Moreover, the overall
station coloration appears deeper. This suggests that uti-
lizing weather5k as guidance can enhance the model’s per-
formance in downscaling at the local scale, aligning more
closely with the real conditions.

12. Running Time and Resource Consumption
Tab. 6 shows the running time and resource consumption of
SGD during the training and the sampling process. To en-
hance the inference efficiency, we have also tested our SGD
on 50-step DDIM sampling to generate HR ERA5 maps
within one minute, making it a feasible approach for practi-
cal use.

13. Ablation Studies on the Relationship of
Variables

SGD utilizes the coupling relationship between data from
satellite observation and ERA5 maps as a condition. For
details, ERA5, as a reanalysis dataset, is derived from satel-
lite observations and other data. Among them, the bright-
ness temperature from satellite observations provides tem-
perature variations being the primary driver of atmospheric
changes. Therefore, the high-quality brightness tempera-
ture data from GridSat play a crucial role in the ERA5 re-
analysis process. Moreover, atmospheric state variables in-
fluence observations through radiative processes, while ob-
servational data, in turn, feed back into ERA5 via data as-
similation systems.

To reveal the impact of variables in GridSat on the down-
scaling of ERA5 maps, an ablation study on the variable

relationship was conducted to quantify the degree of influ-
ence. When only the brightness temperature variables from
GridSat (IrWin Cdr or IrWin VZA Adj) are employed as
the condition, a satisfactory performance can be obtained,
demonstrating that brightness temperature is an important
condition for ERA5 maps downscaling (Tab. 7). All vari-
ables from GridSat could guide the SGD to yield higher-
quality HR ERA5 maps. When incorporating GridSat as
conditions and utilizing only a single LR ERA5 variable as
guidance to generate the single HR ERA5 variable, the in-
troduction of GridSat yields the most significant enhance-
ment for the ERA5 temperature variable (T2m) (Tab. 8).
Considering the correlation between sea-level pressure and
brightness temperature, the incorporation of GridSat as con-
ditions for generating the single MSL variable also con-
tributes to enhancing the MSL downscaling.
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Table 5. Station-level downscaling results for T2M , which utilize the stations from Weather2k to assess the bias between the downscaling
maps and Weather2k station observation values. ERA5 guided and ERA5 + station guided SGD respectively denote the SGD models that
employ the MSE loss between the generated maps and ERA5 maps as the sole distance function, and the SGD model that integrates the
Weather5k station observations into its distance function.

Variable Metrics ERA5 1◦ ERA5 0.25◦ GDP ERA5 Guided SGD ERA5+Station Guided SGD

T2M
MSE 17.51 17.80 18.87 18.08 15.61
MAE 407.81 420.38 466.00 431.33 355.31

Table 6. The running time and resource consumption of SGD.

Mode SGD Training SGD Sampling SGD Sampling with DDIM

Running Time 48h 6min 1min

Resource Consumption 5× 104MiB 1.8× 104MiB 1.6× 104MiB

Table 7. Ablation study employing a single GridSat variable.

Methods
U10 V10 T2m MSL

MSE MAE MSE MAE MSE MAE MSE MAE

Only IrWin Cdr 55.74 6.07 46.11 5.76 191.42 11.04 412.11 16.70
Only IrWin VZA Adj 56.08 5.99 47.53 5.84 194.05 10.87 405.74 16.55

Only IrWVP 60.42 6.74 55.08 6.10 214.07 12.07 424.17 17.52

All Variables in GridSat 51.65 5.84 39.82 5.05 187.69 10.63 374.39 14.49

Table 8. Ablation study employing a single ERA5 variable.

Methods
U10 Methods

V10 Methods
T2m Methods

MSL

MSE MAE MSE MAE MSE MAE MSE MAE

ERA5 1◦ 53.18 5.95 Era5 1◦ 38.51 4.95 ERA5 1◦ 216.27 11.39 Era5 1◦ 470.06 15.78
Only U10 56.72 6.45 Only V10 47.28 5.84 Only T2m 194.15 10.71 Only MSL 398.05 14.90
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Figure 8. Visualization comparison of SGD downscaling to station-scale employing various distance function, where the coloration of each
Weather2k observation station signifies the MAE loss between the downscaled results and their corresponding observed values.
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