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A. Evaluation Metrics
Following previous human image animation evaluation set-
tings, we implement numerous quantitative evaluation met-
rics, including L1, PSNR, SSIM, LPIPS, FVD, and CSIM,
to compare our StableAnimator with current state-of-the-art
animation models. The details of the above metrics are de-
scribed as follows:
(1) L1 refers to the average absolute difference between the

corresponding pixel values of two images. It measures
the typical magnitude of prediction errors without con-
sidering their direction, making it a valuable tool for
quantifying the extent of discrepancies.

(2) PSNR measures the ratio between the maximum possi-
ble power of a signal (in this case, the original image)
and the power of corrupting noise that affects the fi-
delity of its representation. PSNR is expressed in deci-
bels (dB), with higher values indicating better quality.

(3) SSIM refers to the similarity between two images based
on their luminance, contrast, and structural information.

(4) LPIPS measures the similarity between images by an-
alyzing the feature representations of their patches, re-
flecting human visual perception effectively.

(5) FVD evaluates the disparity between the feature distri-
butions of real and generated videos, considering both
spatial and temporal dimensions. FVD is often used to
measure the video fidelity.

(6) CSIM refers to the cosine similarity between the facial
embeddings of two face images. The facial embeddings
are extracted by ArcFace.

B. Preliminaries
The diffusion model includes a forward diffusion process
and a reverse denoising process. In the forward process, the
Gaussian noise is progressively added to the data sample
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x0 ∼ pdata from the particular data distribution pdata:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I). (1)

The data sample x0 is ultimately converted into Gaussian
noise xT ∼ N (0, 1) after T diffusion forward steps. αt is
a constant noise schedule. In the reverse process, the diffu-
sion model εθ(xt, t) tends to recover x0 from xT by pre-
dicting the noise ε based on the current sample xt and time
step t. The MSE loss is applied to train ε(·):

L = Ex0,ε,t(∥ε− εθ(xt, t)∥2). (2)

Moreover, the denoising process can be regarded as a con-
tinuous process (reverse-SDE):

dXt = [f(Xt, t)− g2(Xt, t)∇ log p(Xt, t)]dt+ g(Xt, t)dWt,
(3)

where Wt and ∇ log p(Xt, t) refer to the standard Brown-
ian motion and score function. f(Xt, t) and g(Xt, t) are
drift and volatility. The diffusion model εθ(xt, t) approxi-
mates ∇ log p(Xt, t) during the continuous denoising pro-
cess.

C. Details of Testing Dataset
We select 100 unseen videos (10-20 seconds long) from the
internet to construct the testing dataset Unseen100. Some
examples are shown in Fig. 1. The first row refers to
five frames of a video, while the following rows repre-
sent individual frames of different videos. The sources of
videos come from numerous social media platforms, includ-
ing YouTube, TikTok, and BiliBili. These videos showcase
individuals across ethnicities, genders, portrayed in full-
body, half-body, and close-up shots against varied indoor
and outdoor settings. In contrast to existing open-source
testing datasets (TikTok dataset), our Unseen100 contains
relatively complicated motion information and intricate pro-
tagonist appearances. Moreover, positions and facial ex-
pressions in some Unseen100 videos dynamically change,
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Algorithm 1 HJB Equation-based Face Optimization (σ(t) = t and s(t) = 1)

Input: A diffusion model Dθ(x;σ),Timesteps ti∈{0,...,N},Pre-defined factors γi∈{0,...,N−1},A reference image y
Sample x0 ∼ N (0, t20I)
For i ∈ {0, . . . , N − 1} do

γi = 0
if ti ∈ [Stmin ,Stmax ] : ▷ Snoise,Schurn, Stmin , and Stmax are the pre-defined values of EDM

γi = min
(
Schurn
N ,

√
2− 1

)
Sample ϵi ∼ N (0,S2

noiseI)
t̂i = ti + γiti ▷ Select temporarily increased noise level t̂i
x̂i = xi +

√
t̂2i − t2i ϵi ▷ Add new noise to move from ti to t̂i

xpred = Dθ(x̂i; t̂i) ▷ The diffusion model predicts the denoised sample
xop = xpred.clone().detach() ▷ Starting optimization
op = Adam([xop],η) ▷ Adam and η are an Adam optimizer and a learning rate
xop.requires grad = True ▷ xop is a HJB variable (trainable)
For k ∈ {1, 2, . . . , 10} do ▷ k is the optimization step

fpred = Decoder(xop) ▷ Decoder is a VAE decoder, which converts predicted sample to the pixel level
loss = (1− Cos(Arc(fpred), Arc(y))).abs().mean() ▷ Cos(·) computes the similarity between given embeddings
op.zero grad() ▷ Arc is the Arcface model which extracts face embeddings
loss.backward(retain graph=True) ▷ xop is updated towards optimal face consistency by the gradient of the loss
op.step()

xpred = xop ▷ End of Optimization
di = (x̂i − xpred)/t̂i ▷ Evaluate dx/dt at t̂i
xi+1 = x̂i + (ti+1 − t̂i)di ▷ Take Euler step from t̂i to ti+1

if ti+1 ̸= 0:
d′
i = (xi+1 − Dθ(xi+1; ti+1))/ti+1 ▷ Apply 2nd order correction

xi+1 = x̂i + (ti+1 − t̂i)
(
1
2di +

1
2d

′
i

)
return xN

Figure 1. Examples from Unseen100.

such as shaking heads, making it more challenging to main-
tain identity consistency.

D. Long Animation
We conduct several comparison experiments of our Sta-
bleAnimator and SOTA human image animation models,
as shown in Fig. 2, Fig. 3, and Fig. 4. Each video con-
tains more than 300 frames, featuring complex appearances
of the protagonists, complicated motion sequences, and in-
tricate background information. The results highlight the
superiority of our StableAnimator in generating long ani-
mations while competing methods experience dramatic dis-
tortion of human bodies and identities.

E. Multiple Person Animation
To demonstrate the robustness of our StableAnimator, we
experiment on a particular video involving multiple protag-
onists, as shown in Fig. 5. We can see that our StableAn-
imator is also capable of handling multiple-person anima-
tions while preserving the original identity and achieving
high video fidelity.

F. Optimization Details
We present a more detailed HJB Equation-based Face Op-
timization in Algorithm 1. Notably, the basic structure of



our algorithm closely resembles Algorithm 2 in the EDM
paper. In the main paper, γ1 = −r · (X1 − x1) is derived
from Eq.4 and Eq.5. In particular, this formula is obtained
by calculating the transversality condition of Eq. 4 at the
terminal time.

G. Additional Face Discussion
We further conduct a comparison between our StableAni-
mator and other facial restoration models (GFP-GAN and
CodeFormer). The results are shown in Fig. 6. w/o Face
refers to the baseline model of our StableAnimator without
incorporating any face-related components. It is noticeable
that our StableAnimator has the best identity-preserving ca-
pability compared with other competitors, demonstrating
the superiority of our StableAnimator regarding identity
consistency. By contrast, GFP-GAN and CodeFormer suf-
fer from serious facial distortion and over-sharpening. The
plausible reason is that w/o Face cannot synthesize the pre-
cise facial layout, which in turn undermines the effective-
ness of subsequent facial restoration processes. This rep-
resents a fundamental limitation of post-processing-based
face enhancement strategies.

H. Identity-Preserving Loss
In the image-domain identity-preserving methods, they of-
ten incorporate the ArcFace ID loss into the training pro-
cess, which calculates the cosine similarity between the
ArcFace face embeddings of the denoised result and the
groundtruth. By contrast, during training, we introduce face
masks extracted by Arcface to the conventional reconstruc-
tion MSE loss to improve modeling of face-related regions.
The reason is that applying the ArcFace ID loss requires
employing a VAE Decoder to convert the denoised latents
into pixel level. The reason is that applying the ArcFace ID
loss requires using a VAE Decoder to convert the denoised
latents into the pixel level. Although the VAE Decoder is
frozen during training, a gradient back propagation graph
must be maintained within the VAE Decoder to allow gradi-
ents to flow back to the U-Net for weight updates. However,
the VAE Decoder in SVD contains memory-intensive tem-
poral layers, making this back propagation graph extremely
resource-demanding. Since training the SVD U-Net already
requires substantial computational resources, incorporating
the ArcFace ID loss would result in an unaffordable compu-
tational cost and significantly slow down the training pro-
cess. Therefore, we simply modify the reconstruction MSE
loss by incorporating face masks to enable more explicit
face modeling, making the training relatively lightweight.

I. Additional Comparison Results
Fig. 7 and Fig. 8 show additional comparison results. The
provided pose sequences encompass complex motion infor-

mation, and the initial poses of the reference images are
two categories: one with the protagonist facing directly to-
ward the camera, and another with the protagonist’s profile
turned toward the camera. We can observe that our Sta-
bleAnimator can accurately modify the motion of the refer-
ence images and maintain the original identity, while other
competitors encounter varying degrees of human body dis-
tortion and loss of facial details.

J. Animation Results

We show our animation results in Fig. 9. We can see that
our StableAnimator can perform a wide range of human im-
age animation while simultaneously preserving the protag-
onist’s appearance, background, and identity. Fig. 10, Fig.
11, and Fig. 12 show additional animation results gener-
ated by our StableAnimator. Each cases contain complex
protagonist’s appearance and intricate motion information.
For example, in the reference image in the fifth row of Fig.
10, the protagonist’s closed eyes make it particularly chal-
lenging for the human animation model to preserve ID con-
sistency. It is noticeable that our StableAnimator can ac-
curately manipulate motion in the reference image while
preserving high-quality identity consistency, even in spe-
cific cases involving significant motion variations, such as
head shaking and body rotation. Even when the head of
the protagonist is continuously shaking and the angle fac-
ing the camera is constantly changing during the animation
process, StableAnimator can still maintain a high level of
identity consistency in the animation results without sacri-
ficing details of the protagonist and the background.

K. Additional Ablation Study

To validate the contribution of our proposed components,
We conduct a more comprehensive qualitative ablation
study on different diffusion backbones, as shown in Fig.
13. ControlNeXt and MagicAnimate are based on Stable
Video Diffusion (SVD) and Stable Diffusion (SD), respec-
tively. We can see that our proposed components can sig-
nificantly facilitate the performance of different backbone-
based models, particularly in the facial regions. Notably,
our proposed HJB Equation-based Face Optimization can
still enhance the overall quality of animations to some ex-
tents, even when the backbone models lack any face-related
encoders or adapters. The plausible reason is that our pro-
posed HJB Equation-based Face Optimization can update
the diffusion latents based on the face embedding similarity
at each denoising step, thereby progressively refining the
overall quality of denoised results without introducing any
explicit face-related components.



L. Limitation and Future Work
Fig. 14 shows one failure case of our StableAnimator. In
the given reference image, the girl’s hand covers most of her
face. Our StableAnimator struggles to fill in the obscured
face regions, thereby degrading the quality of the synthe-
sized face. One potential solution is introducing an addi-
tional face-aware inpainting adapter to the diffusion back-
bone for refining the face quality of given reference images.
This part is left as future work.

M. Ethical Concern
Our StableAnimator can animate the given reference im-
age based on the given pose sequence, which can be imple-
mented in various fields, including virtual reality and dig-
ital human creation. However, the potential misuse of this
model, particularly for creating misleading content on so-
cial media platforms, is a concern. To mitigate this, it is
essential to use sensitive content detection algorithms.
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Figure 2. Long animation results (1/3). The images with red borders are the reference images.
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Figure 3. Long animation results (2/3). The images with red borders are the reference images.
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Figure 4. Long animation results (3/3). The images with red borders are the reference images.



Figure 5. Multiple-person animation results.
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Figure 6. Additional comparison results between our StableAnimator and current facial restoration models.
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Figure 7. Additional comparison results (1/2), using the case presented in the paper of MagicAnimate. The images with red borders are
the reference images.
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Figure 8. Additional comparison results (2/2). The images with red borders are the reference images.



Figure 9. Animation results of our StableAnimator.

Figure 10. Additional animation results (1/3). The images with red borders are the reference images.



Figure 11. Additional animation results (2/3). The images with red borders are the reference images.



Figure 12. Additional animation results (3/3). The images with red borders are the reference images.
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Figure 13. Additional ablation study results. IP, Magic, Opt, FE, and ID refer to IP-Adapter, MagicAnimate, our HJB Equation-based Face
Optimization, our Global Content-Aware Face Encoder, and Distribution-Aware ID Adapter, respectively. The images with red borders are
the reference images.

Figure 14. One failure case of our StableAnimator.
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