
Supplementary Material

In the supplement material, we elaborate our formal ar-
guments and provide additional results and ablations.

7. Fisher Information

In this section, we provide a more detailed inspection on
the Fisher Information matrix (FIM) in the context of neu-
ral networks as an extension of Sec. 2.1. The Section 7.1
extends some results from the main paper, the Section 7.2
provides another motivation on why the FIM should be con-
sidered as a tool for analysis of neural networks and finally
Section 7.3 summarizes terminology issues within the com-
munity.

7.1. Cramér-Rao bound

Consider the same setting as in Sec. 2.1, that is a deep net-
work f is given with the unknown (deterministic) weight
vector θ ∈ Rp for some parameters p ∈ N, whose estima-
tion is the subject of our interest. Take any estimator θ̂n that
is computed from n independently-drawn input images and
which is unbiased, i.e.

Eθ̂n = θ. (16)

Then we have the lower bound for the variance matrix of θ̂n
given as

Var
(
θ̂n

)
≥ 1

n
F−1(θ), (17)

which in turn gives also an estimate for the diagonal ele-
ments (

Var
(
θ̂n

))
jj

≥ 1

n

(
F−1(θ)

)
jj
, (18)

where we use the standard notation Aij for the entry at the
position i, j for any matrix A.

We now show the relation between (17) and mean-square
error of the weight estimator. First, consider a weight θ(j)
for some j ∈ {1, . . . , p}. Then we shall write θ(j) = eTj θ,
where ej is the jth unit vector consisting only of zeros and
single one at the jth position: ej = (0, . . . , 1, . . . , 0). Now
recall that that if a random d-dimensional vector X has a
variance matrix Var (X) and e ∈ Rd then the linear combi-
nation eTX has the variance

Var
(
eTX

)
= eVar (X) eT , (19)

from which it easily follows that the variance of the random

scalar θ̂n(j) is

Var
(
θ̂n(j)

)
=Var

(
eTj θ̂n

)
=ejVar

(
θ̂n

)
eTj

=
(

Var
(
θ̂n

))
jj
. (20)

Next, we use the bias-variance decomposition of the mean-
square error: if X̂ is an estimator of an unknown scalar
value X ∈ R, then

E
(
X̂ −X

)2

=E
(
X̂ − EX̂ + EX̂ −X

)2

=E
(
X̂ − EX̂

)2

+ 2E
(
X̂ − EX̂

)
E
(
X̂ −X

)
+E

(
EX̂ −X

)2

=VarX̂ +
(
EX̂ −X

)2

=VarX̂ +
(

BiasX̂
)2

. (21)

Combining (16) with (20), (21) and the Cramér-Rao bound
(17) we obtain

E
(
θ̂n(j)− θ(j)

)2

=Var
(
θ̂n(j)

)
+
(

Bias
(
θ̂n(j)

))2

=Var
(
θ̂n(j)

)
=
(

Var
(
θ̂n

))
jj

≥ 1

n

(
F−1(θ)

)
jj
. (22)

Summing now over all indices j we finally obtain a lower
bound of for the mean-square error of the entire weight vec-
tor θ̂n

E∥θ1 − θ2∥2 =

p∑
j=1

E
(
θ̂n(j)− θ(j)

)2

≥ 1

n

p∑
j=1

(
F−1(θ)

)
jj
. (23)

The quantity on the right-hand-side of (23) is the trace of the
matrix F−1(θ) and it coincides with sum of the eigenvalues
of F−1(θ), which are just the reciprocals of the eigenvalues
of F (θ) [24].

We have shown that eigenvalues of the FIM determine
the least-possible mean-square error for any unbiased esti-
mator of the network weight vector θ and its components.
The case of a biased estimator is more delicate and we
kindly refer the reader to [11].

7.2. Natural Gradient Descent

Natural Gradient Descent (see [29]) is an improvement of
the classical Stochastic Gradient Descent that is proven to
have faster and more stable convergence, but for the price of
significantly increased computation costs. In Natural Gra-
dient Descent, the weight updates are governed by a trans-
formed loss gradient as

θn+1 = θn − F−1(θn)∇θL(θn), (24)

where F−1(θ) is the inverse of the FIM and L(θ) is the loss
function.

We also take the steepest descent direction of the loss
function, but now we do not measure the distance in the
space of weights by means of the Euclidean distance but
we adjust the curvature by measuring the KL-divergence of
the output distributions. In other words, Natural Gradient
Descent is just what happens to Stochastic Gradient Descent
if we say that two weight vectors θ1, θ2 are close to each
other if

DKL(σθ1(·|x), σθ2(·|x)) (25)

is small, in contrast to the usual case when we consider
∥θ1 − θ2∥ instead. And again similarly as above, after in-
specting the eigenvalues of the FIM we can conclude that
the more different the eigenvalues are the more difficult is
to train the model as the weight updates are much larger in
some directions than in others.

Even though we later use the FIM in the applications
where the networks have been trained with the classical
Stochastic Gradient Descent, the curvature given by the
FIM still provides a valuable information – if the network is
more difficult to train using Natural Gradient Descent, it’s
unlikely that when using a simpler optimisation method, the
network would yield stronger performance after training.

7.3. Monte Carlo estimation of the Fisher Informa-
tion Matrix (FIM)

We now follow [19] and outline details of the common mis-
conception in the terminology within the community that
might lead to incorrect estimation of the FIM.

In our setting, the FIM is given as

F (θ) := E
[
∇θσθ(c |x)∇θσθ(c |x)T

]
∈ Rp×p, (26)

where the expectation E is taken with respect to the join
distribution of the image-label pair (x, c). Recall that the
joint distribution can be decomposed into the prior distribu-
tion for x, usually unknown, and the conditional distribution
distribution for the label c given x

σθ(c |x) =
exp (Ψc(x, θ))∑C
d=1 exp (Ψd(x, θ))

, c = 1, . . . , C (27)

where Ψ(x, θ) ∈ RC = (Ψ1(x, θ), . . . ,ΨC(x, θ)) is the

network output (logits) given the weight vector θ ∈ Rp, i.e.
the network weights. We might deal with missing informa-
tion on the prior distribution of x by simply replacing it with
the empirical distribution given by independently drawn ex-
amples x1, . . . , xn which then yields a Monte Carlo esti-
mate

F̂ (θ) :=
1

n

N∑
n=1

Eσθ

[
∇θσθ(c |xn)∇θσθ(c|xn)

T
]

(28)

where Eσθ
now denotes the expectation with respect to the

model prediction σθ, which is in the statistical community
denoted as the empirical FIM. From the strong law of large
numbers it follows that the empirical FIM converges to the
FIM almost surely as the number of samples n tends to in-
finity. Therefore, it is reasonable to replace (26) in the ap-
plications by (28).

However, in some methods (see [19] and references
therein) the expectation in (28) with respect to the model
prediction σθ is often replaced by the empirical distribution
σ of the labels given the images which leads to a different
definition

G(θ) :=
1

n

N∑
n=1

Eσ

[
∇θσθ(c |xn)∇θσθ(c|xn)

T
]

=
1

n

N∑
n=1

[
∇θσθ(cn |xn)∇θσθ(cn|xn)

T
]
, (29)

where now (xj cj) are the observed image-label pairs. The
difference between (28) and (29) is that in the former we
sum the multiplied gradients over all categories c weighted
by the network-predicted probability, while in the later we
use only single class as if the network correctly classified
the sample with zero error. At the initialization stage, the
network prediction is however far from the ground-truth dis-
tribution and therefore G(θ) is indeed very different from
the Monte Carlo approximation F̂ (θ) (and also from the
FIM F (θ) itself). In our method we used F̂ (θ).

8. Experiments

NAS-Bench-201. In Tab. 1, we provide results for
the NAS-Bench-201 architecture search space where we
adopted the practice of NAS-Bench-101 [14, 30, 46] where
only unique graph structures are considered. As we de-
scribed in Sec. 5, the entire search space in NAS-Bench-
201 contains also networks where some computation edges
don’t receive any input or their output cannot be propa-
gated through the network due to the existence of zero op-
eration nodes. By filtering these networks, the number of
architectures drops from 15,625 to 9,445 unique architec-
tures. We argue that this is indeed good practice as networks
with unreachable parameters should not be used in prac-
tice as the energy costs rise without improved performance.

CIFAR-10 CIFAR-100 ImageNet16-120
Type KT SPR nDCG KT SPR nDCG KT SPR nDCG

Simple rankings
FLOPs S 0.578 0.753 0.729 0.551 0.727 0.565 0.517 0.691 0.386
GradNorm [1] S 0.356 0.483 0.407 0.359 0.489 0.202 0.322 0.441 0.192
GraSP [1, 42] S 0.315 0.454 0.439 0.322 0.461 0.224 0.333 0.470 0.207
SNIP [1, 23] S 0.454 0.615 0.433 0.462 0.620 0.221 0.403 0.539 0.212
SynFlow [1, 41] S 0.571 0.769 0.691 0.565 0.761 0.584 0.555 0.747 0.504
Jacov [1] S 0.545 0.712 0.362 0.554 0.720 0.249 0.537 0.701 0.240
NASWOT [31] S 0.556 0.742 0.572 0.579 0.768 0.449 0.583 0.768 0.459
ZenNAS [26] S 0.244 0.321 0.110 0.232 0.300 0.110 0.250 0.344 0.065
GradSign† [49] S · 0.765 · · 0.793 · · 0.783 ·
ZiCo [25] S 0.590 0.785 0.732 0.600 0.794 0.597 0.594 0.787 0.516
TE-NAS [6] A 0.489 0.676 0.481 0.481 0.664 0.214 0.459 0.641 0.143
AZ-NAS [21] A 0.739 0.912 0.702 0.722 0.899 0.473 0.694 0.876 0.482
No. of trainable layers (ℵ) S 0.580 0.723 0.631 0.594 0.737 0.491 0.574 0.716 0.483
VKDNWsingle (ours) S 0.606 0.800 0.724 0.613 0.807 0.592 0.605 0.795 0.583
VKDNWagg (ours) A 0.740 0.911 0.743 0.736 0.906 0.578 0.723 0.893 0.614

Model-driven rankings
GRAF [14] A 0.832 0.957 0.921 0.818 0.952 0.859 0.812 0.946 0.832
VKDNWm (ours) A 0.682 0.864 0.757 0.655 0.840 0.573 0.642 0.826 0.506
(VKDNW+ZCS)m (ours) A 0.865 0.973 0.906 0.859 0.970 0.861 0.863 0.971 0.828
(VKDNW+ZCS+GRAF)m (ours) A 0.878 0.978 0.927 0.869 0.975 0.871 0.874 0.975 0.856

Table 6. Training-free NAS methods in the NAS-Bench-201 [10] search space with inaccessible nodes (see discussion in Sec. 5.2, evaluated
on three public datasets. Kendall’s τ (KT), Spearman’s ρ (SPR) and Normalized Discounted Cumulative Gain (nDCG) are reported, results
are averages of 5 independent runs. The Type column differentiates single (S) and aggregated (A) rankings. Results are reproduced with
code published by their authors, except those marked†, where results from the original paper are taken.

Moreover, many of the ranking scores (such as FLOPs or
#params) do not make sense in such cases, because param-
eters/operations are not used in network output yet they are
still included in these metrics.

For the sake of completeness however, in Table 6 we
provide results of our experiments on full NAS-Bench-
201 search space, using all 15,625 architectures. We can
see that both VKDNWsingle and VKDNWagg outperform
all other simple rankings in all metrics on CIFAR-100
and ImageNet16-120. On CIFAR-10 dataset AZ-NAS[21]
achieves similar Kendall’s τ and Spearman’s ρ correlations
as VKDNWagg, however VKDNWagg leads in nDCG with a
considerable margin. In Table ?? we also present the accu-
racies of the top networks chosen by training-free methods.
MobileNetV2. In this experiment, we search for the best
network configuration in the MobileNetV2 space [38]. The
search space is much larger as it consists of different archi-
tectures with inverted residual blocks, where depth, width,
and expansion ratio of the blocks is altered. We constrained
the model size to approximately 450M FLOPs and number
of layers to 14. We adapt the evolutionary search algorithm
[21] by replacing the objective function in the search algo-
rithm with our VKDNWagg. We then ran 100,000 iterations
of the algorithm, always keeping top 1,024 best architec-

tures, measured by VKDNWagg. In each iteration, one mu-
tation operation randomly changes one element in one of the
top 1,024 architectures, and the newly created architecture
is again ranked using VKDNWagg. As a result, 100,000 it-
erations of architecture evaluations were made in the search
process, leaving us with a shortlist of 1,024 architectures in
the end.

Out of these final 1,024 architectures, we then again
picked the one with the highest VKDNWagg rank and
trained it for 480 epochs on ImageNet-1K [9] in the same
teacher-student setting as [21, 25]. We used vanilla SGD
optimizer with LR=0.2 and single-cycle cosine learning rate
schedule. The final training of the model took 7 days on
8xNVidia A100 GPUs.

9. Ablations

Fisher Information matrix size. In Tab. 8, we evaluate
our method with varying number of trainable layers consid-
ered in the computation of the FIM (see Eq. (2)). We can see
that initial 16 layers of the network already carry enough in-
formation, even comparable to when we use 256 layers. In
our method, we set this parameter to 128 to maximize for
(nDCG) while keeping other metrics high.

CIFAR-10 CIFAR-100 ImageNet16-120
FLOPs 93.76± 0.15 71.11± 0.28 41.44± 0.72
ZiCo [25] 93.80± 0.18 71.21± 0.30 42.12± 0.79
TE-NAS [6] 92.47± 0.30 67.20± 1.01 39.22± 1.99
AZ-NAS [21] 93.51± 0.15 71.04± 0.61 45.57± 0.48
VKDNWsingle 93.50± 0.18 70.94± 0.48 44.20± 0.49
VKDNWagg 93.46± 0.15 70.91± 0.28 44.51± 0.41
GRAF [14] 94.10± 0.20 72.78± 0.45 45.94± 0.42
VKDNWm 93.57± 0.12 70.94± 0.20 43.64± 0.22
(VKDNW+ZCS)m 94.07± 0.11 72.79 ± 0.21 46.48 ± 0.23
(VKDNW+ZCS+GRAF)m 94.19 ± 0.11 72.58± 0.20 46.29± 0.25

Table 7. Training-free NAS methods in the NAS-Bench-201 [10] search space, evaluated on three public datasets. Accuracy of top model
chosen by given method is shown. Results are averages over 5 independent runs.

FIM Dimension KT SPR nDCG
8 0.590 0.782 0.579

16 0.619 0.810 0.592
32 0.621 0.813 0.600
64 0.621 0.814 0.607

128 0.619 0.812 0.611
256 0.619 0.812 0.606

Table 8. Our method VKDNWsingle evaluated for different FIM
(see Sec 2.1) sizes with respect to Kendall’s τ (KT), Spearman’s
ρ (SPR) and Normalized Discounted Cumulative Gain with P =
1000 (nDCG).

One weight per layer
Policy KT SPR nDCG

random 0.618 0.811 0.586
0 0.622 0.814 0.608

0.2 0.622 0.815 0.602
0.4 0.625 0.817 0.606
0.6 0.623 0.814 0.598
0.8 0.622 0.814 0.609
1 0.621 0.813 0.608

Multiple weights per layer
No. weights KT SPR nDCG

1 0.621 0.813 0.600
2 0.634 0.824 0.608
4 0.626 0.817 0.600
8 0.605 0.797 0.594

Table 9. Our method VKDNWsingle evaluated for different param-
eter sampling policies within each trainable layer. Two types of
sampling methods are presented. In One weight per layer we take
128 initial network layers and either sample one weight per layer
randomly or we take for p = 0, 0.2, . . . , 1 the pth index rela-
tive within the weight vector. In Multiple weights per layer we
take 32 initial network layers and sample uniformly k weights for
k = 1, 2, 4, 8. We evaluate Kendall’s τ (KT), Spearman’s ρ (SPR)
and Normalized Discounted Cumulative Gain with P = 1000
(nDCG).

Parameter sampling policy. To make the dimension of
the FIM feasible for computation of eigenvalues, we use
only a small portion of the network weights. More specifi-
cally, instead of taking the full matrix of dimension p (num-
ber of trainable parameters), we only sample one weight
from each trainable layer from the first 128 layers and com-
pute the FIM as if the network did not have any other param-
eters. In Table 9, we compare performance of our method
VKDNWsingle as we vary the number of weights per layer
and their sampling policy. We can see that the performance
as measured by (nDCG) is roughly the same when taking
anything between one and four weights per layer, and then
starts to slowly decrease with a higher number of weights
per layer. Secondly, our method is robust against choice of
the policy as the performance for the case of one weight per
layer with changing position of the weight within each layer
does not change significantly. To further show that we do
not lose any performance when dealing only with limited
number of initial layers, we show in Tab. 8 that our method
is also robust against change of number of considered lay-
ers (the highest number of layers we tested was 256 as the
number of larger networks in NAS-Bench-201 is small).

Orthogonality of VKDNW. Our score VKDNW is based
on information orthogonal to the size of the network: in
Fig. 3, we show that unlike previous work, VKDNW is not
correlated with the network size measured by ℵ (number
of trainable layers). In Fig. 4, we present similar results
where we now measure the network size by the number of
trainable parameters. We can see that VKDNW keeps the
orthogonality property even after change of the size proxy.

Components of the aggregated rank. Our aggregated
rank VKDNWagg combines information from 5 different
sources: our VKDNWsingle, Jacov, expressivity, trainabil-
ity and FLOPs (see Sec. 5.1). In Table 10, all 25 com-
binations of keeping/dropping every of the 5 sources are
evaluated on ImageNet16-120. We can see that our rank-
ing VKDNWsingle is the strongest component as it has the
highest marginal performance in all three considered met-
rics. The lowest performance drop is observed for expres-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
VKDNW (KT=0.05)

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

pr gressivity (KT=0.42)

0.08 0.57 0.19 0.22 1.08 0.68 1.54
#param# in M.

20

25

30

35

40

45

50

55

60
expre##ivity (KT=0.52)

0.08 0.57 0.19 0.22 1.08 0.68 1.54
#param# in M.

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0
trainability (KT=0.14)

Figure 4. Components of AZ-NAS [21] and our VKDNW are
compared w.r.t. correlation with number of model parameters,
in the NAS-Bench-201 search space [10] on ImageNet16-120 [7]
dataset. Our VKDNW proxy has the lowest correlation, ie. is the
most invariant to the size of the model.

sivity: without this component the method would even per-
form better in the (nDCG) metric than the original variant
VKDNWagg. We decided to include expressivity in the final
ranking as we optimized for all three metrics (KT), (SPR)
and (nDCG) simultaneously.

V J E T F (KT) (SPR) (nDCG)
✓ 0.622 0.814 0.608

✓ 0.603 0.781 0.339
✓ 0.588 0.779 0.274

✓ 0.353 0.517 0.233
✓ 0.545 0.718 0.403

✓ ✓ 0.677 0.851 0.565
✓ ✓ 0.675 0.851 0.489
✓ ✓ 0.622 0.821 0.552
✓ ✓ 0.619 0.811 0.557

✓ ✓ 0.630 0.815 0.349
✓ ✓ 0.621 0.818 0.505
✓ ✓ 0.695 0.863 0.574

✓ ✓ 0.616 0.818 0.463
✓ ✓ 0.642 0.818 0.434

✓ ✓ 0.617 0.815 0.580
✓ ✓ ✓ 0.698 0.879 0.632
✓ ✓ ✓ 0.686 0.858 0.515
✓ ✓ ✓ 0.696 0.868 0.616
✓ ✓ ✓ 0.698 0.882 0.612
✓ ✓ ✓ 0.672 0.848 0.512
✓ ✓ ✓ 0.681 0.870 0.675

✓ ✓ ✓ 0.674 0.862 0.527
✓ ✓ ✓ 0.695 0.859 0.484
✓ ✓ ✓ 0.726 0.899 0.673

✓ ✓ ✓ 0.702 0.883 0.630
✓ ✓ ✓ ✓ 0.717 0.891 0.623
✓ ✓ ✓ ✓ 0.706 0.871 0.553
✓ ✓ ✓ ✓ 0.736 0.905 0.695
✓ ✓ ✓ ✓ 0.722 0.896 0.658

✓ ✓ ✓ ✓ 0.735 0.901 0.646
✓ ✓ ✓ ✓ ✓ 0.743 0.906 0.664

Table 10. Components of VKDNWagg rank with non-linear ag-
gregation. Consistency is shown with respect to Kendall’s τ (KT),
Spearman’s ρ (SPR) and Normalized Discounted Cumulative Gain
(nDCG) with P = 1000 on ImageNet16-120 image dataset [7].
Here V, J, E, T and F stand for VKDNWsingle, Jacov, expressivity,
trainability and FLOPs respectively (see Sec. 5.1).

	. Fisher Information
	. Cramér-Rao bound
	. Natural Gradient Descent
	. Monte Carlo estimation of the Fisher Information Matrix (FIM)

	. Experiments
	. Ablations

