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This supplementary material provides additional details
and experimental results promised in the main paper: Sec. |
provides the proof on the bound of the epipolar error of the
mean point correspondence mentioned in Sec. 3.1 of the
main paper, additional synthetic and noise experiments that
were discussed in Sec. 4 of the main paper, accuracy-speed
trade-off results for two-view approximate geometry inside
RANSAC (see Sec. 4 of the main paper), and additional de-
tails and plots on more scenes for the mean point correspon-
dence accuracy (see Sec. 4 of the main paper). Sec. 2 con-
tains ablation studies to validate our choices regarding the
modifications discussed in Sec. 3.2 of the main paper. Sec. 3
provides results for the accuracy-speed trade-off for individ-
ual scenes from the PhotoTourism [7] and Cambridge Land-
marks [8] datasets, evaluations of the three-view solvers for
different thresholds inside RANSAC (see Sec. 4 of the main
paper), runtimes of the proposed and state-of-the-art solvers
for the 4p3v problem, semi-synthetic experiments for in-
creasing outliers ratios on a scene from PhotoTourism [7],
details and results on an alternative evaluation measure (see
Sec. 4 of the main paper), and results with GC-RANSAC
(see Sec. 4 of the main paper).

1. Approximate camera geometry

In this section, in addition to the experiments presented in
Sec. 4 of the main paper (paragraph “Approximate cam-
era geometry”’), we present additional experiments and re-
sults to support our idea of estimating approximate geom-
etry in the first two views. We start with the proof on
the bound of the epipolar error of the mean-point corre-
spondence used in the proposed 4p3v (M) -based solvers
(see Sec 3.1 of the main paper). Next, Sec. 1.2 discusses

* Equal contribution

why the mean-point correspondence provides an additional
constraint (compared to the original point correspondences)
that can be used to estimate the essential matrix. Then, to
further assess the accuracy of the two-view variants of our
approximate solvers (outside of RANSAC), i.e., 4p (A),
4p (M), and 4p (M+4) , we design two additional synthetic
experiments (see Sec. 1.3). The goal of these synthetic ex-
periments is to study how the accuracy of approximate so-
lutions varies with varying properties of the scene and the
cameras. Moreover, Sec. 1.3 provides a synthetic noise
experiment on data extracted from a real scene from the
ETH3D dataset [13], outside of RANSAC for the three-
view solvers. Lastly, Sec. 1.4 contains a speed-accuracy
evaluation of the two-view variants of the proposed solvers,
inside Poselib RANSAC, and in Sec. 1.5 we study the accu-
racy of the mean point correspondence (as in Fig. 3 of the
main paper).

1.1. Proof of the bounds on the epipolar error

While the mean point correspondence m' «+ m? used in

the 4p3v (M) -based solvers can provide a good approxima-
tion of a correct correspondence, such a correspondence can
be noisy. Note that all state-of-the-art 4p3v solvers (includ-
ing 4p3v (HC) [6] and the solver from [12]) rely on cer-
tain approximations without establishing theoretical proofs
to quantify their accuracy. In the 4p3v (HC) solver [6],
the failures that appear quite often are usually the results of
tracking a geometrically incorrect solution inside the homo-
topy continuation method.' Thus, this solution can be arbi-
trarily far from the correct solution. The solver from [12]
requires sampling epipoles from a 10*"-degree curve on

I'The solver is tracking only one from 272 solutions of the relaxed ver-
sion of the 4p3v problem and this solution does not need to be a geometri-
cally correct one.



epipolar line

Figure 1. Illustration of the geometric configuration considered in
the proof of Lemma 1.

which the true epipole must lie. For any selected point on
the curve of epipoles, the error of the sampled epipole is not
bounded, since the true epipole can lie anywhere on the un-
bounded curve. The curve is unbounded since the epipole
can be located arbitrarily far away from the image center
based on the relative pose of the two cameras (up to infinity
for sideways motion).

In contrast, the error of our mean point correspondence
is bounded. The m' <+ m? correspondence can be seen as
a correspondence of points that are projections of the mean
point of three 3D points. In this case, the error of both pro-
jections m! and m? can be computed as an error that is
introduced by approximating the perspective projection us-
ing the para-perspective projection. The approximation er-
ror introduced by the para-perspective projection is studied
in the literature and can be found e.g. in [5, 15].

However, we can also look at the m* «+ m? correspon-
dence from a different point of view. We can consider this
correspondence as a correspondence in which we fix a point
in one view, e.g., m', and generate a corresponding point in
the second view. In this case, as mentioned in the main
paper, it can be proven that the epipolar error of the mean
point correspondence m' <+ m? is bounded by the maxi-
mum distance of the mean point m? from the vertices of the
triangle {x?, X?, x? } Here we provide a simple proof.

Lemma 1. Let us assume two cameras with camera cen-
ters C* and C? that observe 3D points X;, X;, and X,
(see Figure | for an illustration). Let {X%,X;,X}C} and
{x?, x?, xi} be the projections of these 3D points in cam-
era 1 and camera 2, respectively. Let m" be the mean point
of the points {X%, x}, x,lc} and let E be the essential ma-
trix between these two cameras, i.e., a matrix that satisfies
T . : ;
x? Ex; =0, | € {i,j,k}. Then the epipolar line Em'

passes through the triangle {x%, x?, X% }

Proof. The camera center C' and the 3D points X;, X},
and X, form a tetrahedron T (see Figure 1). The pro-
jections {x},x},x} } in the first camera lie at the edges of
this tetrahedron T'. The ray from the camera center C!
through the mean point m' thus lies inside the tetrahedron
T! and intersects the plane defined by 3D points X;, X},
and X}, in a point M that lies inside the triangle defined by
{Xi, X, Xk}

The camera center C? and the 3D points X;, X;, and X,
form a tetrahedron 7T'2. Again, the projections {xf, X?, xi}
lie at the edges of the tetrahedron 72. The ray passing
through the camera center C? and the 3D point M lies in-
side the tetrahedron 72 and thus intersects the image plane
of the second camera at a point that lies inside the triangle
defined by the points {x7,x7,x7}. By construction, the
projection of M into the second camera lies on the epipolar
line Em*. Therefore, the epipolar line Em! which is a line
connecting this point and the epipole e, passes through the
triangle {x?, x37 x%} O]

It follows from Lemma | that since the epipolar line
Em' passes through the triangle {x7,x3,x}}, the maxi-
mum distance of the mean point m? to the epipolar line
Em! is equal to the maximum distance of m? to the ver-
tices of the triangle.

1.2. Mean-point constraint

As already mentioned in the main paper, under the assump-
tion of a para-perspective projection, i.e., of affine geom-
etry, the mean point of three 3D points is projected to
the mean points of the 3D points’ projections in both im-
ages [15]. Thus, the mean point correspondence m! <+ m?
does not add a new constraint if used to estimate an affine
camera. This can be easily shown. In the case of affine
cameras, the essential matrix E 4 has the form

0 0
E4= (0 O (1)
c d

-~ 2

Thus the epipolar constraint for the mean point correspon-
dence m! <+ m? with the homogeneous coordinates m' =
(xi/34x}/3+x}/3),and m? = (x7/3+x3/3+x3/3):

(m?)"TEgm! =0 )

can be written as a linear combination of the epipolar con-
straint for the three input points, i.e. (¥?) "Eax; = 0,1 €
{i,7,k}.

This is not the case for perspective cameras. For perspec-
tive cameras, i.e., when estimating the full essential matrix
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Figure 2. Results from a synthetic experiment evaluating the accuracy of two-view variants of our solvers as a function of the angle between
the principal axes of the cameras are presented. The top row, comprising Subfigures (a) and (b), shows results for Gaussian noise with
standard deviations of 2px and 4px, respectively. The bottom row, consisting of Subfigures (c) and (d), presents results for uniform noise
with 2px and 4px deviations, respectively. The outlier ratio is set to 20% in all cases. From the solutions for each solver and sample we

select the one with the lowest error.
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Figure 3. Results from a synthetic experiment evaluating the accuracy of two-view variants of our solvers as a function of the angle between
the principal axes of the cameras are presented. We present results for Gaussian noise with standard deviations of 2px and 4px, respectively.
The outlier ratio is set to 40% in all cases. From the solutions for each solver and sample we select the one with the lowest error.

E, the mean point correspondence introduces an additional
constraint. In this case the epipolar constraint

(m?)TEm! =0 , (3)

after expansion, contains terms zlx?,a # b, a,b €
{i,j,k}. Thus, the epipolar constraint (3) is not a lin-
ear combination of the individual epipolar constraints
(x?)"Ex{ = 0, | = 1,7, k. Therefore, the mean point cor-
respondence provides an independent constraint when used
to estimate the epipolar geometry of perspective cameras.

1.3. Synthetic Experiments

The error of the relative poses estimated with the proposed
approximate 4p3v (M) -based and 4p3v (A) -based solvers
depends on many aspects, e.g., the baseline and the view an-
gles of the cameras w.r.t. the three points used to compute
the mean point correspondence, the depth of these points,
the size and shape of the triangles defined by the three
points, the type of motion of the cameras, the depth of the
scene and the distance of cameras from the scene, the level
of noise in the correspondences, efc. Isolating the impact
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Figure 4. Synthetic experiments for two-view solvers, measuring the pose error under varying camera distance from the scene and scene
depths, with added 1px noise. In (a), points are uniformly sampled within a 2000x2000x100 cube, and projected to cameras positioned
at distances (in units) from the scene as indicated by the x-axis, looking towards the scene. In (b), the depth of the scene is varied, with
points sampled inside a 2000x2000xdepth cube as specified by the x-axis. Cameras are randomly placed at distances between 1000 and
1200 units from the scene, looking towards the scene. On the y-axis of both figures is the pose error measured as max (Rerr, terr). From
the solutions for each solver and sample we select the one with the lowest error. The results are displayed by boxplots which shows the

25% to 75% quantiles as a box with a horizontal line at the median.

of the individual aspects, e.g., through experiments on syn-
thetic data, is highly non-trivial (e.g., how to generate real-
istic synthetic scenarios that allow conclusions to generalize
to real-world scenarios) and analysing the co-dependencies
between different aspects on the overall performance seems
to need a paper on its own. Moreover, the effect of approxi-
mation introduced by using para-perspective projection was
already studied in the literature [5, 15].

In the main paper, we thus presented mostly results on
real-world scenes, without trying to isolate individual fac-
tors (see Figure 3 and Table 1 in the main paper). However,
we also tested interesting camera and scene setups using
synthetically generated data.

We extend the synthetic experiment for increasing angles
between the projection rays of the cameras in the main pa-
per (Fig. 2 of the main paper), by investigating the impact
of increased noise, alternative noise models, and higher out-
lier ratio. Similar to the experiment of increasing angles,
we evaluate the two-view solvers (outside of RANSAC) in
two additional interesting scenarios. The goal is to study
the effect of the proposed approximations on the relative
pose estimation under varying properties of the scene and
the cameras.

Additionally, we test the performance (outside of
RANSAC) of our proposed approximate solvers and the
state-of-the-art solvers for the 4p3v problem w.r.t. increas-

ing image noise added to ground-truth correspondences ex-
tracted from a scene from the ETH3D dataset [13]. As an
evaluation metric for the two-view geometry, we use the
pose error measured as max (Reyr, terr) [71.

Increasing angle between principal axes of cameras. In
Fig. 2, we present results analogous to Fig. 2 of the main
paper, but for ¢ = 2px and o = 4px noise levels. We also
include results for the uniform noise model (noise is evenly
distributed in range [—o, 0]). As in Fig. 2 of the main paper,
the synthetic data contain 20% outliers. As in the results
presented in Fig. 2 of the main paper, the accuracy of both
approximate solvers decreases as the angle increases, where
4p (A) demonstrates notably lower accuracy than 4p (M)
and 4p (M+d). However, ENM singnificantly improves
the accuracy, with 4p (M+0) +ENM achieving the same or
slightly better accuracy than 5pt+ENM for angle < 30°. In
Fig. 3 we present results for Gaussian noise and higher out-
lier ratio, in particular 40% outliers. The results are consis-
tent with those of Fig. 2, though the increased outlier ratio
leads to a higher error when using ENM.

Increasing distance of cameras to the 3D scene. It is
known that the quality of the affine approximation, i.e., the
approximation of the perspective projection using the para-
perspective projection, depends on the distance of the points
from the camera [15]. Thus in the first experiment, we eval-
uate the performance of all solvers w.r.t. increasing distance
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Figure 5. Noise experiment showing the pose error measured as max (O.5(Ri3r +Re), O.S(tgr + téfr)), as a function of the noise scale

in pixels. Here, R;; and t;; are the relative rotation and translation of the i™ and j™ views, respectively. From the solutions for each solver
and sample we select the one with the lowest error. Note that the errors observed for the pure 4p (A) solver (without ENM and without

refinement) are outside of the error range shown in this plot.

of the cameras to the 3D scene.

We perform this experiment on 10k synthetically gener-
ated instances. For each of the 10k instances, we uniformly
sample 3D points inside a 2000x2000x100 unit cube, and
the camera centers are placed at random points with the
same distance from the scene. The distances tested (in
units) are {500, 1000, 1500, 2000, 2500, 3000}. The cam-
eras are generated such that they look towards the scene. We
add 1px noise to the projected points. Note that the scene
is generated such that the projections of the points cover a
large portion of the image for cameras at all distances.

Fig. 4a shows the results of this experiment represented
by the boxplot function, which shows values between the
25% and 75% quantiles as a box with a horizontal line at
the median. As expected, the errors of the 4p (A) solver
decrease as the distance of the cameras from the scene in-
creases, since affine geometry can be better satisfied with
larger distances from the scene. Without considering ENM,
5p (E) is the best performing solver. The errors of the
5p (E) solver are increasing with increasing distance of
the cameras from the scene (due to the fact that fixed im-
age noise is generating larger errors for points that are
farther from cameras). This effect is less visible for the
proposed 4p (M) and 4p (M+d) solvers since for these
solvers the error is originally more dominated by the er-
ror in the mean point correspondence. When considering
ENM, 5p (E), 4p (M), and 4p (M1J) solvers perform sim-
ilarly, with 4p (M+0) being the most accurate for distances
> 1500. The 4p (A) solver is also greatly improved when
using ENM, reaching similar or even better accuracy than
5p (E) (w/o ENM), for distances > 1000.

Increasing depth of the 3D scene. In Fig. 4b, instead
of increasing the distance of the cameras to the 3D scene,
we place the cameras randomly at distances between 1000
and 1200 units away from the scene, looking towards the
scene, while changing the depth of the scene. In particular,
the 3D points are generated uniformly at random inside a
2000x2000xdepth unit cube, where the depth of the scene
is specified by the values on the x-axis. The tested depths
are {10, 50,100, 200, 500, 800, 1500,2500}. We add 1px
noise to the projected points. Without using ENM, the pose
errors of 4p (A) are visibly decreasing as the depth of the
scenes increases. This is to be expected since increasing the
scene depth increases the chance of sampling four points
that are more consistent with the para-perspective / affine
camera model (since the points are more likely to be far-
ther away from the cameras). The remaining solvers, that
is, 5p (E), 4p (M), and 4p (M%), are not significantly af-
fected by the changes in the depth of the scene. When us-
ing ENM, all tested solvers are improved significantly, with
4p (M+0) being the most accurate in terms of pose error.
When using ENM, the errors in the estimated poses increase
with increasing scene depths, which is particularly visible
for the 4p (2) solver. This behavior is due to the fact that
for points farther away from the camera, the same amount
of image noise (1px) has a larger impact, thus leading to the
non-minimal samples being more affected by noise. Still,
using ENM clearly leads to significantly smaller errors for
all solvers.

Noise experiments. We test the performance of our
solvers and the state-of-the-art solvers w.r.t. increasing im-



age noise. We used the SfTM model of the botanical garden
scene (randomly selected from all scenes) from the ETH3D
dataset [13] to obtain instances of 5 points in three views by
identifying images in the scene that share 3D points. Perfect
noise-free image correspondences are generated by project-
ing the 3D points into the images. We then add increasing
amounts of normally distributed noise to these correspon-
dences. We generated more than 1k instances. Note that the
4p3v (HC) solver was trained on the ETH3D dataset [13].

The results for increasing noise in the image points are
shown in Fig. 5. The figure shows boxplots of the pose
errors measured in the same way as in our experiments
in the main paper (c¢f. Sec. 4 in the main paper), i.e., as
max (0.5(RL2. +RE2.),0.5(612. + t13.)).” The errors are
zoomed into an interesting interval and are shown as func-
tions of varying Gaussian noise from Opx to 16px.

Due to the approximations used in our proposed
4p3v (M) -based and 4p3v (A)-based solvers, these
solvers exhibit non-zero errors for zero noise. However,
at noise levels > 4px, our 4p3v (M+d) +R solvers re-
turn comparable or even better (w/ ENM) results than the
5pt+P3P solver. For noise > 8px, also the 4p3v (M) +R
solver with ENM returns slightly more accurate poses than
the Spt+P3P solver with ENM. In general, the effect
of increasing image noise is less visible for approximate
4p3v (M) -based and 4p3v (A) -based solvers. In this case,
the error of the approximation is dominating the error intro-
duced by the noise in the image correspondences. While for
4p3v (A) -based solvers the approximation error is dom-
inant at all noise levels, for 4p3v (M) -based solvers, at
noise > 4px, the error introduced by the approximate mean
point correspondence (and points in their vicinity in d-based
solvers) is suppressed by the error introduced by noise in
the remaining point correspondences.’ Note that, although
the pose errors for the 4p3V (A) +R+ENM solver are higher
than those of the rest of the solvers, as shown in our real
experiments, this solver still returns reasonably low errors
to provide local optimization (LO) within RANSAC with a
good initialization in real-world settings. Further, note that
the 5pt+P3P solver samples one more point (real corre-
spondence) in the first two cameras, and these points are
affected only by the considered noise. This shows that the
mean point correspondence used in the 4p3v (M) -based
solver is a good approximation to a real correspondence.
The recent state-of-the-art 4p3v (HC) solver [6] is fail-
ing in about 50% of the instances for noiseless data, even
though the solver was trained on the ETH3D dataset. Thus,

2Here Réjr,« is the error of the estimated relative rotation between cam-
eras ¢ and j, computed as the angle in the axis-angle representation of
RflegT, and t¢.,. is the error of the estimated translation computed as the
angle between the two unit vectors corresponding to the translations [7].

3This can be seen from the comparable pose accuracy of the 5pt +P 3P
and 4p3v (M) solvers for > 8px noise, and the comparable accuracy of
the 5pt+P3P and 4p3v (M%) solvers for > 4px noise.
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Figure 6. Speed-accuracy evaluation of various solvers for

two view relative pose estimation, evaluated using PoseLib [9]
on 12 scenes from the Phototourism dataset [7] (excluding
St. Peter’s Square). We report the AUC@10° of the pose
error and vary the number of Poselib RANSAC iterations
({10, 20, 50, 100, 200, 500, 1000}) for a fixed 5 px epipolar
threshold. The top plot is a zoomed-in version of the bottom plot.

the median errors are significantly larger than the median
errors of the remaining solvers.
inside

1.4. Two-view approximate solutions

RANSAC

In the next experiment, we evaluate the discussed two-view
solvers, i.e., the 5p (E), 4p (M), 4p (M%J), and 4p (A)
solvers, inside RANSAC as well. This experiment indicates
how the proposed approximate solvers would have behaved
if used as two-view solvers. Note that in the two-view case,
the proposed filtering (+F) and refinement (+R) using the
4*" point correspondence in the third view are not applica-
ble.

Fig. 6 shows the speed-accuracy evaluation of the
solvers for the problem of two view relative pose estima-
tion evaluated using PoseLib RANSAC [9] on 12 scenes
from the Phototourism dataset [7] (excluding St. Peter’s
Square) with pairwise point correspondences obtained us-



ing [3, 10]. The statistic reported is the AUC@10° of
the pose error for a varied number of RANSAC itera-
tions ({10, 20, 50, 100, 200, 500, 1000}) and a fixed epipo-
lar threshold of 5px. The upper figure is a zoom-in of the
lower figure to an interesting interval, where differences be-
tween the solvers are more visible. Although all proposed
solvers (except the 4p (A) solver without ENM) have a per-
formance comparable to that of the state-of-the-art two view
5pt solver, the 5pt solver is the best performing one for
the two-view scenario. This result is not surprising, given
the well-known good performance (in terms of speed and
accuracy) of the 5pt solver and not very high outlier con-
tamination of the data (for which sampling one point less
would have potentially had a more visible effect). It also
indicates that the proposed modifications, i.e., the filter-
ing +F the and refinement +R, for the three-view scenario
are important and are making the proposed 4p3v approxi-
mate solvers practical and more precise than the 5pt+P 3P
sovler.

1.5. Accuracy of the mean point correspondence

Fig. 3 in the main paper showed results obtained by estab-
lishing correspondences between the mean of the triangle
in one image and various points in the triangle in the sec-
ond image. We expressed points in the second triangle via
their barycentric coordinates and uniformly sample 19 x 19
barycentric coordinates (a, b) € [0, 1], such thata +b < 1
(ensuring points inside the triangle). The 3rd coordinate is
given as ¢ = 1 — a — b. For each correspondence, we mea-
sured the symmetric epipolar error w.r.t. the ground truth
pose, translation and rotation errors, and the percentage of
inliers. Fig. 3 in the main paper showed the rotation er-
ror and percentage of inliers, as observed for the St. Pe-
ter’s Square scene from the PhotoTourism dataset [7]. Here,
Fig. 7 shows the same statistics, including translation and
symmetric epipolar errors, for the St. Peter’s Square scene
already used in the main paper (Fig. 7 (top row)), and two
more scenes from the PhotoTourism dataset: Sacre Coeur
(Fig. 7 (middle row)), and Temple Nara Japan (Fig. 7 (bot-
tom row)).

As with Fig. 3 in the main paper, to suppress the effect of
discrete sampling, for each metric, we fit a 2D Gaussian dis-
tribution and report the mean value (in barycentric coordi-
nates) as numbers in brackets in the caption of the figure. As
can be seen, the same conclusion can be drawn from Fig. 7
as from Fig. 3 in the main paper: The optima of the studied
metrics are reached very close to the mean point of the trian-
gles, which has barycentric coordinates (0.3, 0.3). This val-
idates our approach of using the mean point correspondence
as an approximate correspondence in our 4p3v (M) -based
solvers.

Estimator | 6 |AVG(®)l MED(°)| | AUC@5T @101 @207
02 4.03 2.09 57.81 7348  84.67
0.1 3.99 2.03 5829 7371 8478
0.09 3.99 2.02 5852 7395  84.93
0.08 395 2.04 5866 7411 8504
4p3v (M£6) 0.07 4.02 2.03 5863 7401 84.98
0.06 401 2.01 5862 7392 84.90
0.05 3.98 1.98 5894 7419  85.04
0.01 401 2.07 5790 7360 8475
0005 | 412 2.07 5754 7323 8455
0.001 4.28 2.14 56.65 7251  84.08
02 3.75 1.87 6136 7583  86.07
0.1 375 1.87 6133 7578  86.03
0.09 3.74 1.87 6139 7581  86.02
0.08 37 1.87 6145 7590  86.16
4p3v (M£S) 4R 0.07 3.76 1.87 6141 7582 86.06
0.06 3.79 187 6140 7581  86.04
0.05 375 1.86 6138 7579  86.03
0.01 375 1.87 6125 7570 8595
0005 | 373 1.87 6122 7575  86.03
0.001 3.86 1.90 6082 7546  85.80
02 3.78 1.88 6112 7570 8596
0.1 3.77 1.87 61.16 7568  85.95
0.09 3.76 1.87 6124 7570 8592
0.08 373 1.87 6130 7578 86.07
0.07 3.77 1.87 6130 7571  85.99
P3N SR | 06 | 380 1.87 6127 7575 8599
0.05 375 1.87 6128 7573 8598
0.01 3.78 1.88 61.11 7562  85.89
0.005 | 376 1.89 61.09 7565 8595
0.001 3.90 191 6053 7526  85.67

Table 1. Evaluation of the effects of the scale of the § shift on the
St. Peter’s Square scene from PhotoTourism [7].

2. Ablation studies

This section contains ablation studies to validate our
choices in modifications discussed in Sec. 3.2 of the main
paper.

Validation of . We tested our J-based solvers for differ-
ent values of § and measured their performance. In general,
there is no common value of the ¢ shift that leads to the
best results on all datasets. This is expected since the pre-
cision of the mean-point correspondence depends on many
different factors, e.g., the viewing angles of the cameras,
the type of the motion, the depth and spatial distributions
of the 3D points, etc. We set the value for § by evaluating
their effects on the St. Peter’s Square scene from the Photo-
Tourism dataset [7], which we used for validation only and
did not include it in the other results for PhotoTourism [7]
in the paper. Tab. | shows how the different settings of
the scale of the § shift affect the accuracy of the §-based
solvers. Based on these experiments, we use § = 0.08 as it
typically provides the best or the second best results for all
variants of the 4p3v (M=%4) -based solvers. However, note
that 4p3v (M+J) -based solvers achieve a very similar ac-
curacy even with different settings of §. Thus, we can con-
clude that the choice of J is not critical. In some scenarios,
the choice of the optimal § parameter may be more scene-
dependent and could potentially be set using learning-based
approaches.

Refinement validation. We also perform validation of the
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Figure 7. Left to right: Distribution of the average symmetric epipolar error (top: 0.3337, 0.3327) (middle: 0.3319, 0.3308) (bottom:
0.3355, 0.3290); rotation error (top: 0.3373, 0.3349) (middle: 0.3373, 0.3347) (bottom: 0.3261, 0.3496); translation error (top: 0.3336,
0.3417) (middle: 0.3325, 0.3382) (bottom: 0.3213, 0.3515); and percentage of inliers gathered (top: 0.3266, 0.3434) (middle: 0.3377,
0.3354) (bottom: 0.3198, 0.3552), as a function of the barycentric coordinates of the triangle in the second image w.r.t. the mean point of
the corresponding triangle in the first image on 485k four-tuples of correspondences from scenes (top) St. Peter’s Square, (middle) Sacre
Coeur, and (bottom) Temple Nara Japan from the PhotoTourism dataset [7]. For each metric, we fit a 2D Gaussian distribution and report

the mean of the distribution in brackets.
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Figure 8. Evaluation of the effects of the number of inner re-
finement (+R) iterations within the 4p3v (M+d) +R+F solver on
the St. Peter’s Square scene from the PhotoTourism [7] dataset.
Shown is the speed-accuracy evaluation, where the curves are ob-
tained by varying the number of Poselib RANSAC iterations.

total number of LM steps in the refinement (+R). Again, we
used the St. Peter’s Square scene from the PhotoTourism
dataset [7] for validation. The results of this experiment are
shown in Fig. 8. We chose the value of 2 for other experi-
ments as it provides good speed-accuracy trade-off across a
range of RANSAC iterations. However, we note that other
settings provide very similar performance.

Validation of +F/+R/+ENM. Fig. 9 ablates the impact of in-
dividual modifications (+R/+C/+ENM) proposed in Sec. 3.2
in the main paper on the speed-accuracy trade-off. It es-
pecially highlights the importance of the refinement us-
ing the 4th point in the third view (+R). Fig. 9 also
shows the performance of the top-performing solvers when
different maximum epipolar thresholds are used within
RANSAC. Compared to 4p3v (A) +R+F+ENM, the pro-
posed 4p3v (M+4J) -based solvers are not as sensitive to the
selection of the epipolar threshold. The results presented in
Fig. 9 were obtained on the PhotoTourism dataset. Fig. 10



- 4p3v (M) 4p3v (M+4) 4p3v (M+0) +R
— 4p3v (M+d) +R+F — 4p3v (M+J) +R+F+ENM — 4p3v (A) +R+F+ENM
t = 3px t = 5px t = 10px
0.801
/"
o 0.784
o
—
90.76—
2
<<
0.741
102 103 10*

Mean runtime (ms)

0.795/

0.7901 *

AUC@10°

0.785

102 103 104
Mean runtime (ms)

Figure 9. Speed-accuracy trade-off on 12 scenes of Photo-
tourism [7]. We show the impact of (Top:) different modifications
presented in Sec. 3.2 in the main paper on the performance of the
solvers and (Bottom:) the maximum epipolar threshold used in
RANSAC on the performance of the three best-performing meth-
ods.

shows results of the same ablation study, focused on the
4p3v (M) -based solvers, on the Cambridge Landmarks and
Aachen Day-Night v1.1 datasets.

3. Experiments on real data

In this section, we aim to further study the performance
of the proposed methods, supplementing Sec. 4 (paragraph
“Experiments on real data”) of main paper with more de-
tailed evaluations. Section 3.1 presents results on individ-
ual scenes, extending the analysis in Fig. 4 of the main
paper. Section 3.2 investigates the impact of varying the
RANSAC epipolar threshold on solver performance. These
experiments extend Fig. 9 (bottom) by comparing addi-
tional solvers across all three datasets. Section 3.3 evalu-
ates and compares the run-times of each of the proposed
and state-of-the-art solvers. Section 3.4 explores the robust-
ness of the solvers under varying inlier ratios using semi-
synthetic data. In Section 3.5, we provide results using

Poselib RANSAC [9] for an alternative pose error metric
that considers errors across all three camera pairs. Sec-
tion 3.7 evaluates the solvers within the GC-RANSAC [1]
framework for all three datasets.

3.1. Results on individual scenes

Fig. 4 in the main paper showed results jointly on all Pho-
toTourism [7] scenes (except St. Peter’s Square), jointly on
the 5 Cambridge Landmarks [8] scenes (except the Street
scene, which is commonly not used due to issues with its
ground truth), and Aachen Day-Night v1.1 [16]. It also
showed results on one individual scene from [8], i.e., the
St. Mary’s Church scene. In Fig. 11, we provide results
for the accuracy-speed trade-off evaluation for all remain-
ing individual scenes of PhotoTourism [7] and Cambridge
Landmarks [8].

As discussed in the main paper, the accuracy of the pro-
posed approximate solvers is scene-dependent. This also
applies to the state-of-the-art 4p3v (HC) solver [6], since
in this solver the scene needs to be similar enough to the
training scenes for the MLP-based classifier to work well.
The proposed ENM refitting suppresses to some extent the
scene dependency of the proposed 4p3v (M) -based and
4p3v (A) -based solvers. It can be seen that the proposed
4p3v (M+d) +R+F solver consistently provides the best
speed-accuracy trade-off both with and without ENM ac-
cross all scenes. 4p3v (A) +R+F+ENM provides a similar
performance, typically beating 4p3v (HC) [6]. However,
it may perform worse for some specific scenes, e.g., Shop
Facade and Palace of Westminster. In general, the results
on individual scenes are consistent with the results from the
main paper.

3.2. RANSAC threshold sensitivity

In Fig. 9 (bottom), we provided experiments showing how
the performance of the selected methods changes when we
vary the RANSAC epipolar threshold. In Fig. 12 we provide
more extensive results comparing the methods with differ-
ent thresholds on all three datsets.

Similar to the results presented in the main pa-
per, 4p3v (M*d)+R+F in both variants (with and
without ENM) shows consistently good performance
even when using a different threshold in RANSAC.
In contrast, 4p3v (A) +R+F+ENM performs worse than
4p3v (M+d) +R+F when considering a higher epipolar
threshold in RANSAC.

3.3. Solver run-times

In this section, we present run-times of the proposed solvers
as well as the state-of-the-art solvers for the relative pose
problem of three calibrated cameras. While the main paper
reports run-time results for full RANSAC-based estimation,
we now report the run-times of the individual solvers out-
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Figure 10. We show the impact of the different strategies (+F /+R/+ENM) introduced in Sec. 3.2 of the main paper on the performance
of our 4p3v (M) -based solvers on Cambridge Landmarks [8] and Aachen Day-Night v1.1 [16]. We report the AUC@10°. We vary the
number of Poselib RANSAC iterations ({100, 200, 500, 1000, 2000, 5000, 10000}). We use an epipolar threshold of Spx in RANSAC.

Runtimes are averaged over all image triplets.

[ 5pt+P3P [ 4p3v (HC) [ 4p3v (M) [ 4p3v (Mkd) [ 4p3v(A) |
[ Time(us) | 7790 | 6606 | 8392 | 21871 | 6L12 |

Table 2. The average run-time, averaged over more than 50k in-
stances of the Sacre Coeur scene of the PhotoTourism dataset [14],
of the solvers for the 4p3v problem.

side of RANSAC. To measure the run-times of the solvers®,
we calculated the average run-time of each solver on more
than 50k instances of the Sacre Coeur scene of the Photo-
Tourism dataset [ 14]. The run-times are reported in Table 2.
The experiments were performed on an Intel(R) Core(TM)
i9-10900X CPU @ 3.70GHz. In general, the implementa-
tions of all proposed solvers are not optimized for speed,
and we still see room for speeding them up.

3.4. Outlier experiments

To show how the different solvers perform even under vary-
ing inlier ratios, we perform a semi-synthetic experiment.
We use the Notre Dame scene from PhotoTourism [7]. We
keep all inlier triplets w.r.t. a Spx epipolar threshold using
the ground truth poses. We add additional synthetic outlier
correspondences by generating random points in all three
views. This allows us to study how the different meth-
ods perform when the inlier ratio changes. The results

4Note that for 4p3v (HC) solver, in Tab 2, the time needed to load
the weights of the network (or any other required data) is not added to the
runtime of the solver. The data are loaded once per RANSAC, and the
loading takes on average 45ms.

10

are shown in Fig. 13. As expected, the performance of
all solvers decreases with lower inlier ratios. We also ob-
serve that 4p3v (M£d) +R+F performs well even with a
low inlier ratio. In contrast, the relative performance of
4p3v (A) +R+F+ENM worsens with a decreased inlier ra-
tio. However, we note that even with an inlier ratio of 40%,
it still results in performance comparable to the baseline
5pt+P3P solver. This suggests that a high inlier ratio is
not necessary for the ENM to work well in conjunction with
the solver 4p3v (A).

3.5. Alternative evaluation measure

For the evaluation in the main paper, we defined the pose
12 13 12 13

error as max (0.5(R2, +RL3.),0.5(t12, + t13,)), where

RY . and t . are the angular errors of rotation and transla-

tion (both in degrees) for camera pair ¢5. The 4p3v problem

also includes the estimation of Ro3 and to3 since the relative

scale of t12 and t;3 is recovered. We therefore also present

results for the pose error defined as

Per,«zmax (R12 R13 R23 t12 t13 t23)

err’ “terr? “terr? Yerr) Yerr? Yerr (4)
The results equivalent to Tab. 2 from the main paper using
this pose error definition are presented in Tab. 3. A speed-
accuracy comparison equivalent to Fig. 4 in the main paper
is presented in Fig. 14. The overall ranking of the methods
remains the same under both the metric used in the main
paper and the alternative described in this section.
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Results for individual scenes from the Cambridge Landmarks [8] (a-d) and Phototourism [7] (e-p) scenes which were

not presented in the main paper. We report the AUC@10° of the pose error and vary the number of Poselib RANSAC iterations
({100, 200, 500, 1000, 2000, 5000, 10000} ). We use an epipolar threshold of 5px inside RANSAC. Runtimes are averaged over all image

triplets.

3.6. Comparison with [12]

The authors of [12] kindly shared their source code with us.
Unfortunately, we were not able to run the part of the code
that samples epipole candidates from a 10-degree polyno-
mial curve (appropriately sampling the curve is hard as the
epipole can be arbitrarily far from the image center). At the
same time, the authors were also not able to run it.

Based on the working parts of the code, we tested an
oracle version of [12], where instead of sampling the 10-
degree polynomial curve, the oracle gives us the correct

11

epipole. Given a sample close to the correct epipole, [12]
performs comparable to our M-based solvers. In practice
it is hard to find good samples (the epipole can be arbitrar-
ily far from the image center). [12] report using 40-1,000
samples with additional local optimization for robust esti-
mation. Even then, [12] show that this approach performs
worse than 5pt+P3P on synthetic data. In contrast, two
additional samples in our §-based solvers already lead to
better accuracy than 5pt+P3P.
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Phototourism [7]

Cambridge Landmarks [8]

Aachen Day-Night v1.1 [16]

Estimator | AVG ("), MED(°)| | AUC@S5t @101 @201 | Runtime(ms)| | AVG ()| MED (°)| | AUC@5t @101 @201 | Runtime (ms)| | AVG(°)| MED (°)| | AUC@51 @107 @201 | Runtime (ms) |
4p3v (HC) [6] | 1028 281 | 4697 6137 7316 | 6410 | 1395 458 | 2954 4868 65.12 | 60.11 | 2346 658 | 2856 4120 5312 | 67.26
5pt+P3P 9.02 2381 4706 6189 7412 3377 1239 457 2956 49.03 6594 24.04 2117 633 2007 4190 5413 5334
5pt+P3P+ENM 8.77 273 4793 6268 7473 4879 12.00 452 2976 4935 6625 3482 2139 642 2891 4173 5378 7161
4p3v(a 58.51 46.32 1616 2193 2771 16.58 5975 4350 1359 2293 3144 13.33 5353 4138 1705 2362 3010 3204
4p3v(a )+ENM 8.44 2.60 4946 6410 7585 4045 11.86 446 3017 4989 6674 2835 21.00 623 2008 4205 5432 62.44
4p3v (a) + 53.59 38.24 1831 2491 3134 1632 5417 2426 1660 2732 36.63 1248 5181 38.69 1755 2435 3105 2956
4p3v (B) +R4F 5631 4355 1689 2307 2915 1110 5599 30.64 1571 2607 3510 935 5412 42.69 1664 2304 2950 19.75
4p3v (A) +RHFHENM 8.45 2.59 4959 6422 7592 3237 1178 441 3041 5002 6693 2343 2111 629 2002 4197 5418 4236
4p3v (M) 9.98 301 4516 6002 7255 3518 13.63 473 2866 4783 6470 25.15 2344 6.82 2790 4053 5269 54.89
4p3v (M) +ENM 8.86 275 4768 6254 74.67 48.83 12.10 452 2980 4931 66.17 3493 2151 640 2891 4173 5383 70.87
4p3v (M) + 924 274 4774 6244 7447 4152 1276 453 2077 4927 66.12 3076 22.06 639 2892 4169 5370 60.40
4p3v (M) +RAF 9.19 271 4810 6273 74.69 30.88 1284 453 2074 4929 66.11 272 22.06 642 2870 4153 5362 4238
4p3v (M) +R+F+ENM 8.52 2.62 49.16 6382 75.60 4451 11.79 444 3027 4991 6672 3248 2093 621 2916 4216 5446 58.08
4p3v (M) 9.8 294 4592 6105 7366 83.70 12.68 459 2935 4888  65.89 59.23 642 2860 4155 125.02
4p3v (M) +ENM 8.44 273 4801 6302 7520 125.66 1161 447 30.04 66.68 89.05 622 2026 4216

4p3v (M) + 832 258 4979 6453 7630 100.61 1193 440 3047 6122 73.94 6.12 2935 4231

4p3v (Mkd) +RAF 8.39 258 4969 6441 7618 7173 12.06 441 3042 67.08 5284 6.15 2924 4222

4p3v (M) +RAFFENM | 7.99 2.56 4993 6467 7645 112.60 11.36 439 3054 67.30 81.98 6.08 2040 4248

Table 3. Experiments with the alternative evaluation measure described in Sec. 3.5. Results for different solvers implemented in the

PoseLib framework [9] on all scenes from the PhotoTourism [7], 5 scenes from the Cambridge Landmarks [8], and the Aachen Day-Night
v1.1 [16] datasets. We mark the best and second best results. Reported runtimes are for the whole RANSAC.
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Figure 14. Experiments with the alternative evaluation measure described in Sec. 3.5: Speed-accuracy trade-off on (a) all scenes from
PhotoTourism [7], except St. Peter’s Square, (b) 5 Cambridge Landmarks [8] scenes, and (c) the Aachen Day-Night v1.1 [16] dataset.
We report the AUC@10° using the alternative definition of the pose error (4). We vary the number of Poselib RANSAC iterations
({100, 200, 500, 1000, 2000, 5000, 10000}). We use an epipolar threshold of 5px in RANSAC. Runtimes are averaged over all image
triplets.
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Figure 15. Speed-accuracy evaluation of various solvers for three view relative pose estimation, evaluated using GC-RANSAC [1] on the
(left) St. Mary’s Church, (middle) Shop Facade, and (right) King’s College scenes from the Cambridge Landmarks dataset [8]. We report
the AUC@10° of the pose error and vary the number of RANSAC iterations ({5, 10, 20, 50, 100, 200, 500, 1000}) with fixed 5px epipolar
threshold.

3.7. GC-RANSAC

Besides PoseLib’s RANSAC implementation, we also eval-
uated and compared our proposed solvers with the state-of-
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Phototourism [7]

Estimator ‘ AVG (°) | MED(°) | ‘ AUC@5T @101 @201 ‘ Runtime (s) |
4p3v (HC) [6] 5.34 1.89 59.19 7225 8210 2.95
Spt+P3P 5.18 1.86 59.48 7235 8216 1.99
Spt+P3P+ENM 5.15 1.86 59.53 7239 8220 2.05
4p3v (A) 575 1.90 59.02 71.87  81.61 2.34
4p3v (A) +R 5.69 .72 61.59 7383 82.88 298
4p3v (A) +R+F 5.76 1.73 61.53 73.79 8283 3.00
4p3v (A) +R+F+ENM 5.34 1.72 61.71 74.00  83.09 2.87
4p3v (M) 521 1.88 59.35 7229 8215 1.99
4p3v (M) +R 4.94 172 6191 7421 8336 2.71
4p3v (M) +R+F 4.94 172 61.88 7422 83.35 2.71
4p3v (M) +R+F+ENM 4.93 172 61.84 7421  83.38 2.73
Ip3v (MED) 5.09 1.89 59.41 7250 8238 2.00
4p3v (M%) +R 4.90 171 61.90 7426  83.42 2.76
4p3v (M£6) +R+F 4.88 1.71 61.95 7431 8347 2.75
4p3v (M+d) +R+F+ENM 4.86 172 61.90 7429 8348 2.84
Cambridge Landmarks [8]
4p3v (HC) [6] 8.13 3.05 43.75 60.73  73.93 2.37
5pt+P3P 8.01 3.09 43.17 60.17  73.67 231
Spt+P3P+ENM 8.09 3.11 43.15 60.02  73.50 2.48
4p3v (B) 8.59 3.11 43.16 59.98 73.15 2.62
4p3v (A) +R 7.95 2.80 46.27 6320  75.86 2.96
4p3v (A) +R+F 8.05 2.81 46.28 63.17 7575 2.98
4p3v (A) +R+F+ENM 7.75 2.81 46.38 6320  75.86 2.98
4p3v (M) 7.95 3.08 4332 60.37 7375 234
4p3v (M) +R 7.22 2.80 46.48 63.52  76.30 2.86
4p3v (M) +R+F 8.05 2.81 46.28 63.17 7575 2.98
4p3v (M) +R+F+ENM 7.75 2.81 46.38 63.20  75.86 2.98
4p3v (M£0) 7.82 3.06 43.58 60.60  73.99 2.41
4p3v (M£0) +R 7.16 2.80 46.52 63.51  76.25 3.01
4p3v (M£0) +R+F 7.12 2.81 46.33 6347  76.35 2.95
4p3v (M%4) +R+F+ENM 7.19 2.80 46.42 6344  76.24 3.29
Aachen Day-Night v1.1 [16]
4p3v (HC) [6] 10.73 3.84 39.94 53.01 64.77 1.90
Spt+P3P 10.76 391 39.54 52,67  64.56 177
Spt +P3P+ENM 10.78 3.79 39.86 53.06  64.79 1.89
4p3v (A) 11.06 3.88 39.54 52.63  64.19 224
4p3v (A) +R 10.09 3.50 42.64 5575 6701 332
4p3v (A) +R+F 10.22 349 4258 5575 66.87 3.38
4p3v (A) +R+F+ENM 10.23 3.48 42.58 5575  66.88 3.32
4p3v (M) 10.62 3.83 39.62 5292 64.74 1.87
4p3v (M) +R 10.11 3.46 42.69 5590  67.11 3.17
4p3v (M) +R+F 10.22 3.53 42.58 5562 66.71 3.18
4p3v (M) +R+F+ENM 10.06 3.52 42.55 5576 67.00 3.20
4p3v (M%) 10.55 3.84 39.86 5330  65.15 1.89
4p3v (M) +R 10.04 345 4291 56.02  67.15 3.24
4p3v (M£4) +R+F 10.15 3.47 42.65 5576 66.94 3.17
4p3v (M+§) +R+F+ENM 10.04 3.50 42.67 5582 66.95 333

Table 4. Results for different solvers and strategies implemented
in the GC-RANSAC framework [1] for all scenes from the Pho-
toTourism [7], the Cambridge Landmarks [8] and Aachen Day-
Night v1.1 [16] datasets. We mark the best and second best re-
sults. Runtimes are reported in seconds for the whole RANSAC
with early termination (0.9999 confidence, minimum 100 itera-
tions) and the epipolar threshold set to Spx.

the-art solvers inside the GC-RANSAC [1] framework.

In GC-RANSAC, local optimization (LO) is performed
using non-minimal solvers that fit models to larger-than-
minimal samples. We use the non-minimal version’ of
the S5pt solver [11] and the non-minimal absolute pose
DLSPnP [4] solver.’ In contrast to LO used in Poselib
RANSAC, where the estimated model is used as an ini-
tialization of the Levenberg—Marquardt algorithm, in GC-
RANSAC, the estimated model is used only to score inliers.

5The non-minimal version of the S5pt solver [11] uses the last four
vectors from the SVD/QR decomposition of a n X 9 matrix instead of the
4-dim null space of a 5 X 9 matrix to parameterize the unknown essential
matrix.

This may not be the most efficient way how to perform non-minimal
refitting. However, since all methods use the same LO, it is sufficient for a
fair comparison.
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Tab. 4 shows the results for GC-RANSAC with PROSAC
sampling [2] and a 5px epipolar threshold for all scenes
from the PhotoTourism [7] dataset, 5 scenes from the Cam-
bridge Landmarks [8] dataset, and the Aachen Day-Night
vl.1 [16] dataset. Similarly to what was observed for
Poselib RANSAC (see Table 2 in the main paper), with
the suggested modifications, all the proposed solvers out-
perform the state-of-the-art 4p3v (HC) solver [6] and the
baseline 5pt+P3P solver in terms of pose accuracy with
comparable runtimes. Again, the d-based solvers provide,
in general, the best speed-accuracy trade-off.

Due to a different LO, there are several differences com-
pared to the results from Poselib RANSAC. Since in GC-
RANSAC the estimated model is used only to score inliers,
it does not need to be as precise as in Poselib RANSAC.
Thus, even 4p3v (A) solver without any modification pro-
vides reasonably precise results.” In contrast to this, in
Poselib RANSAC, the 4p3v (A) solver without any mod-
ification results in large errors (see Table 2 in the main pa-
per). Without refitting using ENM, the affine model esti-
mated for the first two views in the 4p3v (A) solver is
not sufficiently precise to provide a good initialization for
Levenberg—Marquardt-based optimization in Poselib’s LO.
Still, even for GC-RANSAC, the pure 4p3v (A) solver per-
forms worse than the remaining variants of the proposed
4p3v (A) -based and 4p3v (M) -based solvers.

Another difference is in refitting using ENM. For GC-
RANSAC, the effect of ENM is not as significant as for
Poselib RANSAC. When applied without refinement (+R),
the early non-minimal refitting (ENM), in general, increases
the precision of solvers. When combined with +R, the im-
provement is not very visible. The reason is that the model
returned after refining the initial, approximate model esti-
mated by the 4p3v (M) -based and 4p3v (A) -based solvers
on the 4" correspondence is usually sufficiently accurate
to score inliers. Moreover, in the LO of GC-RANSAC,
this approximate model is refitted using the non-minimal
5pt solver (which is similar to the refitting that is used
in ENM), and the non-minimal DLSPnP solver [4]. Simi-
larly to ENM, the filtering (+F) that uses the 4" correspon-
dence does not bring an improvement that is as visible as
for Poselib RANSAC. This is because for GC-RANSAC,
the speedup obtained using the filtering +F is not as signif-
icant, compared to the longer running times of the LO part
of GC-RANSAC.

On the other hand, the remaining two suggested modi-
fications, i.e., the §-based solvers and the refinement (+R)
using the 4*" correspondence bring visible improvements.
This behavior is also visible in Figure 15. Here we present

"Note that the model of 4p3v (A) is refitted in the LO step with the
non-minimal 5pt solver. This is similar to the refitting used in ENM, i.e.,
GC-RANSAC'’s local optimization includes some form of ENM, explaining
why the 4p3v (A) performs quite well.



an ablation study on the effects of the various modifications
(0 and +F/+R/+ENM, which were introduced in Sec. 3.2
of the main paper) on the 4p3v (M) -based and 4p3v (A) -
based solvers. The results are reported on the St. Mary’s
Church, Shop Facade, and King’s College scenes from the
Cambridge Landmarks dataset [8]. These results especially
highlight the importance of the refinement using the 4"
point in the third view (+R). On the other hand, the benefits
of 4p3v (M%J) -based solvers over the 4p3v (M) -based
solvers that are also visible in Table 4 are not so significant
as in Poselib RANSAC. Still, 4p3v (M+d) -based solvers
lead to improved pose accuracy.
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