A. Evaluation Protocol Details

In the main text in Sec. 4.1, we described the motivation and methodology for choosing our StableEval set of 27 evaluations. We
also categorized our main results in Tab. 2 into IN-shift, Object-Centric, and Scene-Centric, under the zero-shot classification
section. We now provide additional details for these sections.

StableEval Protocol. For rigorously defining our final evaluation suite, we first selected 34 candidate evaluation datasets
popularly used for evaluating standard image-text contrastive pretraining [48, 84, 119] and adaptation [49, 129, 152, 193, 198]
methods. These datasets ranged from standard natural image-classification, to fine-grained classification of birds, animals, and
cars etc., to different domains of images like satellite imagery and street signs. The full set of 34 candidate evaluations we
started with are: FGVC-Aircrafts [104], Oxford Flowers-102 [112], Oxford-IIIT Pets [115], Stanford Cars [78], Food-101
[15], Caltech-101 [86], CIFAR-10 [79], CIFAR-100 [79], Pascal VOC 2007 [36], EuroSAT [60], RESISC45 [64], STL-
10 [28], SUN-397 [174], Dollar Street [127], GeoDE [121], Country211 [119], FMoW [26], DTD [27], iWildCam [10],
PatchCamelyon [157], CLEVR Counts [72], CLEVR Distance [72], KITTI Distance [51], ImageNet-V2 [125], ImageNet-A
[62], ImageNet-R [61], ObjectNet [8], ImageNet-Val [30], ImageNet-Sketch [164], Rendered SST2 [119], Flickr30k (I2T and
T2I) [116], MSCOCO ((I2T and T2I)) [96].

We then trained several variants of standard SigLIP and CLIP models with a ViT-S/32 image-encoder and a BERT-small
text-encoder, to quantify the amount of variance present for each evaluation dataset, solely due to the random seed (i.e.,
different initialization of model weights). Specifically, we first trained 5 IID-Sigl.LIP models on both DataComp-1B and
WebLI-1B for 3B examples seen (i.e., with randomly sampling batches of data at each step) by only changing the random seed.
Note that we ensured that the exact samples seen per step in the training process was fixed—that is, the only randomness across
the 5 different seed runs was the model initialization. We also trained an IID-CLIP model for 5 seeds to add variation on the
training objective to the set of models. We then get the average standard deviation of each evaluation dataset by first averaging
over the 5 different random seeds per method (i.e., DataComp-IID-SigL.IP, DataComp-IID-CLIP, WebLI-IID-SigLIP), and
then averaging over the 3 different combinations of methods. This average standard deviation is taken to be the variability of
each evaluation, which is shown in Fig. 3. We also tested this variability across other settings by changing the patch-size of the
image-encoder (from S/32 to S/16) and increasing the model size (from S/32 to B/32), and found the variability (standard
deviation) per evaluation dataset to be consistent.

Equipped with these standard deviations per evaluation dataset, we then aim to prune out the set of highly unstable
evaluations from the full set of 34 evaluations by taking inspiration from the continuous inverse-variance weighting (IVW)
method [58]. We start with the lowest-variance evaluation (Country211 with 0.15% standard deviation), and progressively
add evaluations in increasing order of their computed standard deviations, each time computing the variability of the
average over the current set of evaluations. For a set of N evaluations, the variability of the average is computed as

std(E1...En)=y/ 7= >_; var(E;). At each step, we compare the variability of the average with the variability of the most
reliable evaluation (i.e., Country211 with 0.15% standard deviation), and prune out all evaluations beyond the critical point
where the variability of the average becomes larger than the Country211 variability. This leaves us with a set of 27 evaluations
that are both diverse as well as stable across different random seeds. The 7 evaluation datasets that were pruned out of the final
set are: EuroSAT, CLEVR Counts, GTSRB, iWildCam, SVHN, KITTI Distance, CLEVR Distance, PatchCamelyon, and
Rendered-SST2.

Categorization of Datasets. Having identified our stable set of evaluation datasets, we next categorize them into different
brackets for easier parsing of the different capabilities of the models in Tab. 2. In Tab. 4, we showcase the breakdown of
the different categories represented in Tab. 2 for all 27 evaluations. We categorize them into object-centric datasets like
FGVC-Aircrafts or Stanford Cars, scene-centric datasets like SUN-397 or RESISC45, Imagenet-based natural distribution
shifts like ImageNet-V2 or ObjectNet, and other miscellaneous evaluations like DTD or Country211. Finally, we also evaluate
our models on image-text retrieval datasets like COCO and Flickr, both using text-to-image retrieval and image-to-text retrieval,
as separate evaluation metrics.



Table 4. Final StableEval Set of 27 evaluations.

Category Dataset Task Test set size  Number of classes

FGVC-Aircrafts [104] Aircraft recognition 3,333 100

Oxford Flowers-102 [112] Flower recognition 6,149 102

Oxford-IIIT Pets [115] Pet classification 3,669 37

Stanford Cars [78] Vehicle recognition 8,041 196

. . Food-101 [15] Food recognition 25,250 101

Object-Cent

JECERENtIC Caltech-101 [86] Object recognition 6,085 102

CIFAR-10 [79] Visual recognition 10,000 10

CIFAR-100 [79] Visual recognition 10,000 100

Pascal VOC 2007 [36] Object recognition 14,976 20

STL-10 [28] Visual recognition 8,000 10

SUN-397 [174] Scene recognition 108,754 397

Scene-Centric GeoDE [121] Object/scene recognition 12,488 40

RESISC45 [64] Satellite imagery recognition 6,300 45

FMoW [26] Satellite imagery recognition 22,108 62

ImageNet-V2 [125] Visual recognition 10,000 1,000

. . ImageNet-A [62] Visual recognition 7,500 200
Distribution-shifts

oS  ageNet-R [61] Visual recognition 30,000 200

ObjectNet [8] Visual recognition 18,574 113

ImageNet-Val [30] Visual recognition 50,000 1,000

ImageNet-Sketch [164] Visual recognition 50,889 1,000

Misc. DTD [27] Texture classification 1,880 47

DollarStreet [127] Object recognition 3,503 58

Country211 [119] Geolocation 21,100 211

Retrieval Flickr30k (I2T, T2I) [116] Image and text retrieval 31,014 N/A

MSCOCO (12T, T2I) [96] Image and text retrieval 5,000 N/A

B. Image-text contrastive Objectives

K22 (X3

1 . '
Lsoftmax (15 B) = 3 (log pETR log pl_xlt*ﬂmg)

ACsigmoid(xi; B) = -

b
logpif + »  log(1—p;¥)

j=1,j#i

Here, we expand the full image-text pretraining objectives described in Sec. 3.1. The per-sample softmax image-text objective
is primarily used for training CLIP [119] models, while the per-sample sigmoid objective is primarily used in training
SigLIP [190] models:



C. Proofs for Active Curation as Implicit Distillation

In this section, we provide derivations for our theoretical results in Sec. 3.2 showcasing the equivalence between active data
curation and knowledge distillation. We first show the proof for the case where we use easy-reference scoring for data-curation,
followed by the learnability-scoring case, and finally showcase a generalized version of the proof.

Setup. Recollect from the main paper text in Sec. 3.2, that we are given an image-text pretraining dataset D. The simple
training approach is to sample uniformly random batches of data 5 (of size b), from D at each step ¢, and minimize
L € {Lsoftmax; Esigmoid} (see Appendix B for full equations for the loss objectives). We call this baseline, minimizing
L= % meU[D] L(x;; B) as the IID-baseline (Onp). Further, remember that in the active data curation setup, we employ a
smarter way to select batches, using a pretrained reference model 6. At each step ¢, we select a sub-batch B (size b) from a
much larger super-batch S (size B) according to an active selection distribution A[S).

Active Data Curation as Implicit Distillation (ACID). We now show formally that active curatjon can be cast as “implicit
distillation” and should benefit from larger reference models. The model now minimizes £ = %Zzw A[S] L(zi;B),

which in expectation is £ = E[L] = > _, a(x)L(x; B) given that super-batches S are sampled uniformly. Recall that

L(x;B) = — Zle yi(z) log ¢;(x), where y; are the labels of the contrastive task and ¢; are the probabilities induced by
the pairwise similarities of the student 6. Let p; be the probabilities induced by the reference model 0,¢. In the case of
easy-reference scoring and the softmax loss, a(z) = % exp 2?21 yi(x)logpi(x) = Lps-(x) where i* is the index of the

Z
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This demonstrates that by curating data according to the reference model 6,.¢, we implicitly distill its knowledge via a novel
data-driven objective, using a combination of model predictions and real labels as targets. We next prove the equivalence of
data curation and knowledge-distillation, when using learnability-based scoring for our active data curation.

Learnability-based Data Curation is Hard Distillation. When using learnability-based prioritization, the active selection
distribution A factorizes as a'®™ = L exp(s®™™) = Lexp[L(-]0) — L(:|frr)] = a7l . ghardleam yhere ghardleam —
+ exp[L(+|0)] prioritizes examples with high loss according to the student. Since easy-reference prioritization yields implicit
distillation (I-ACID, Eq. (4)), learnability prioritization yields:
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This demonstrates that learnability-based active curation is equivalent to implicit distillation on hard examples (“H-ACID”)
according to the student model.

ACID for general learning objectives. In the general case (including sigmoid-contrastive learning, and combined image-to-
text and text-to-image softmax contrastive learning), y(z) contains a set of labels y; () such that Zl;:l yi(x) = 1. In this case



a(z) = Lexp 30 yi(2)logpi(x) < £ S0 yi(a)pi(2) = Li(x) due to the convexity of the exponential. In particular,
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As such, learning from actively-curated data minimizes an upper bound on the KD objective described previously, for general

learning objectives of the form 22’:1 yi(x) log ¢;(z), including the softmax- and sigmoid-contastive objectives we utilize in
this work.



D. Knowledge Distillation Objectives

In this section, we describe in detail all the knowledge-distillation methods we use to compare as baselines in our results
in Sec. 4.2. Given the student model # and a pretrained teacher model Gcycner, We considered three main objectives for distilling
the knowledge from the teacher Oeycper into the student model 6.

Softmax contrastive distillation. Here, our aim is to distill the contrastive logit matrix from the teacher to the student.
Formally, given a data-batch B, we extract teacher embeddings {(z ;n;g ,2%4)} and student embeddings {(z ;n;g ,25%)}. The
teacher and student contrastive matrices, 7, xp and Spp, contain the teacher and student image-text logits, respectively:

img txt R img txt
Tij = awz; P -zj7t,817] =052, "2 (12)

Our softmax distillation objective takes the form of a cross-entropy loss between the teacher and student contrastive
matrices, considering the texts as labels by applying a row-wise softmax on the contrastive matrices (7, S) and the images as
labels by applying a column-wise softmax (77, ST).

Lsmax-dist = ~% Z softmax(7;.)log softmax(S;.) + softmax(ﬁ?_j)log softmax(SZ_) (13)

image-to-text text-to-image

Sigmoid contrastive distillation. Similarly as above, here we distill the teacher contrastive matrix into the student matrix.
However, differently from the softmax case, in this loss we use the full teacher and student image-text logits with the addition
of the bias term: '

Tig =z 24P, Sy = a2 - 24, (14)

Our sigmoid distillation objective then simply takes the form a blnary cross-entropy objective between the teacher and the
student logits (converted to probabilites using the sigmoid (o) activation):

b
Lsig-dist = —% Z (O’(ﬁ_’.) logo(Si,.) +o(—T,,.)log U(—Sz-,.)) (15)

Feature-matching distillation. We also explore a distillation loss that directly aligns the image and text embeddings of the
student and teacher models directly, using a simple mean-squared error. Such a strategy has also been explored in prior SoTA
CLIP distillation works [180], with great efficacy. If the student and teacher embedding dimensions are different, we project
the student embedding to the teacher dimension using a learnable linear projection head P eaq:
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Students with Knowledge Distillation. For training student models with KD-objectives as specified above, we always use
them in conjunction with the standard contrastive loss (either Eq. (6) or Eq. (7)):

Ldistfonly = ﬁsoftmax/sigmoid + >\smax : Esmax—disl + )\sig : ﬁsig—dist + )\fm : Lfm—dist (17)

This objective allows us to flexibly combine the different distillation objectives by varying the different loss-weights
Asmaxssig/fim- By default, we use only the softmax distillation objective with a loss-weight of 2.0, however we perform sweeps
over multiple configurations of loss-weights and loss-combinations in our experiments.

Ensemble Teachers. The above distillation setup also easily enables using multiple teacher models in an ensemble for teaching
the student. Such an ensemble teacher strategy has been explored in prior SOTA multimodal distillation works [155]. For a



teacher ensemble, the distillation objective simply averages the predicted logits from the different teachers. As an example, an
ensemble-softmax-distillation objective would be as follows:

K b
1
Lenssmacdist = TN Z Z softmax(’T )log softmax(S;.)+ softmax(’ﬁ )log softmax(S;fT,_)) (18)
k=11i=1

image-to-text text-to-image



E. Training Details

Our default configuration follows that of SigLIP [190]. Unless otherwise specified, we train for 3 billion total samples
seen, with a batch-size of b=32, 678 with the sigmoid contrastive loss (Eq. (7)). The image-encoder takes images resized
to (256 256) without any additional augmentations. By default for all our ablation experiments, we use a ViT-S/16 image
encoder and a BERT-small text encoder. The image encoder uses global-average pooling (GAP) for the final embedding by
default, however for some experiments we also use multi-head attention pooling (MAP) [85, 189]. The text-encoder uses a
sentencepiece tokenizer [80] trained on the English-C4 [120] dataset, with a vocabulary size of 32, 000. We truncate all text
captions to the first 64 tokens. For most experiments, we use an rsqrt learning rate scheduler [189], with a peak learning-rate
of 0.001, and linear-warmup and linear-cooldown applied for 10% of total steps. However, for some of our final method
comparisons in Tab. 2, we use a cosine learning rate scheduler [131] with a linear-warmup applied for 10% of total steps
and peak learning-rate of 0.001. By default, we use a filtering ratio of f=0.8 when using ACID sampling, leading to a
super-batch-size of B=163, 840. We additionally use an ACID sampling temperature of 7=10 for all our experiments. We
sweep over A={0.5,1.0,2.0} for finding the optimal loss-weight for the Softmax-Distillation loss (Eq. (3)). We use a weight
decay of 0.0001, gradient clipping to a maximum norm of 1.0, and the Adam optimizer with (8,=0.9, 52=0.95). All our
experiments are conducted with big_vision [11] using jax [16].



F. About baselines and final ACED models

In this section, we describe the exact architectural details of all the baselines and our ACED models in Tab. 5.

Table 5. Architectural Details of baselines and ACED-F* models. For each of the baselines and our own ACED models, we provide
the exact image and text encoder architectures used, the image-resolution used for training, the patch-size for vision-transformer specific

encoders, the text sequence-length, training dataset and total compute budget for training in terms of total samples seen.

Method SZTS:“ GI;‘llel;s Pretraining Dataset Image Encoder  Text Encoder ReIsl::::l gt?on PaItT l? gSeize Se(}:eiten.
DatologyAl-cls-S/32 2.0B 2.83 Datology-Proprietary ViT-S/32 BERT-small 224 32 71
DatologyAl-ret-S/32 2.0B 2.83 Datology-Proprietary ViT-S/32 BERT-small 224 32 77
TinyCLIP-RN30M 15.2B** 6.93 LAION-400M RN-30M Custom 224 -) 77
TinyCLIP-45M/32 15.8B** 3.70 LAION+YFCC-400M ViT-65M/32 Custom 224 32 71
TinyCLIP-63M/32 15.8B** 5.65 LAION+YFCC-400M ViT-63M/32 Custom 224 32 71
MobileCLIP-SO 13B* 3.70 DataCompDR-1B MCi0 MCt 256 () 71
ACED-F0 13B 3.30 DataComp-1B ViT-S/32 BERT-small 256 32 64
DatologyAl-cls-B/32 5.1B 7.39 Datology-Proprietary ViT-B/32 BERT-base 224 32 77
DatologyAl-ret-B/32 5.1B 7.39 Datology-Proprietary ViT-B/32 BERT-base 224 32 77
CLIP-KD-RNS50 0.5B 9.09 CC-3M+CC-12M RN-50 BERT-base 224 ) 71
OpenAI-RN50 13B 9.09 OpenAI-WIT RN-50 BERT-base 224 ) 71
OpenAI-CLIP-B/32 13B 7.39 OpenAI-WIT ViT-B/32 BERT-base 224 32 71
LAION-CLIP-B/32 34B 7.39 LAION-2B ViT-B/32 BERT-base 224 32 71
DataComp-CLIP-B/32 13B 7.39 DataComp-1B ViT-B/32 BERT-base 224 32 71
MetaCLIP-CLIP-B/32 13B 7.39 MetaCLIP-2B ViT-B/32 BERT-base 224 32 71
CLIP-CID-B/32 7.2B 7.39 LAION-225M ViT-B/32 BERT-base 224 32 71
TinyCLIP-39M/16 20B** 9.48 YFCC-15M ViT-39M/16 Custom 224 16 71
MobileCLIP-S1 13B* 7.64 DataCompDR-1B MCil BERT-base 256 ) 71
ACED-F1 13B 7.14 DataComp-1B ViT-B/32 BERT-small 256 32 64
OpenAI-RN101 13B 12.75 OpenAI-WIT RN-101 BERT-base 224 ) 71
MobileCLIP-S2 13B* 10.81 DataCompDR-1B MCi2 BERT-base 256 (-) 77
ACED-F2 13B 10.29 DataComp-1B ViT-B/24 BERT-small 240 24 64




G. Comparison with other batch selection methods

In this section, we compare our ACID method with other online batch selection methods in the literature as outlined in Sec. 2.
For a fair comparison, we re-implement four batch-selection methods under our setting, namely, Bad-Students [34], Selective-
Backprop [70], RHO-Loss [107] and JEST [35]. For this experiment, we pretrain SigL.IP models on DataComp-1B [48]
for 3B samples seen. For the reference models required by RHO-Loss, JEST and ACID, we use our pretrained WebLI-C++
reference.From Tab. 6, we observe that our ACID method outperforms all the other batch-selection methods by large margins
(1.4% better than JEST and 3.2% better than RHO-loss).

Method ‘ IN-val COCO | 27-Avg
IID (baseline) 63.6 424 60.1
Softmax-KD 66.1 47.3 62.0
Bad-Students [34] 60.9 49.0 57.8
Sel-BP [70] 63.5 42.7 60.2
RHO-loss [107] 65.9 494 62.6
JEST [35] 68.7 534 64.4
ACID | 710 536 65.8

Table 6. ACID outperforms all other online batch selection methods.



H. Additional Experiments, Ablations and Results

In this section, we provide some additional ablations and more detailed results, augmenting those present in the main paper.
We further also include additional baseline comparisons with proprietary models.

H.1. ACIDistill vs. IIDistill scaling
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Figure 7. How to combine ACID and KD in ACED? The optimal scalable strategy for combining ACID and Softmax-Distillation is
the ACIDistill method—where we apply both the contrastive and distillation losses on the ACID batch—this is both more performant and
training-time efficient than the /IDistill scheme.

H.2. Softmax vs Sigmoid Pretraining

We have used SigLIP (sigmoid) pretraining for all our main results because of it’s strong performance as a baseline. Here we
show that the results are similar with CLIP (softmax) pretraining as well. Overall, the sigmoid variant is more scalable.

CLIP ablation: ACED still outperforms ACID and KD
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Figure 8. CLIP vs SigLIP pretraining. (left) Our ACED method when applied with CLIP pretraining instead of SigLIP, also further
improves over both our ACID and Softmax-KD approaches. This showcases our methods’ generality across pretraining objectives. (right)
We compare all our methods across SigLIP and CLIP pretraining, and we observe that SigLIP pretraining clearly outperforms the CLIP
objective across all the methods, justifying our choice of using it for all our final results.



H.3. ACID vs KD as we scale compute

In Sec. 4.2.2, we demonstrated that our ACID outperforms distillation methods across a variety of data-, student-size-,
and method-configurations. However, all these results were at the 3B samples seen scale. Here, we compare ACID and
Softmax-Distillation as we increase the training compute budget to 6.5B and 13B samples seen scale. Fig. 9 depicts that as we
scale up the compute budget, ACID still strongly outperforms Softmax-Distillation, further signifying the scalability of our
method.

ACID vs KD as compute scales
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Figure 9. ACID outperforms Softmax-Distillation across training compute budgets.

H.4. Full Detailed Results across all 27 StableEval Evaluations

Table 7. Full Detailed Per-Dataset Results of ACED models on the 27 StableEval Evaluations.
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H.S5. Hyperparameter Sensitivity in ACID
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Figure 10. ACID hyperparameters. (left) We observe that as we keep increasing the filtering ratio, we continue to see improved performance
from f=0.2 to f=0.8. However, note that these improvements saturate at very high filtering ratios (f=0.9) due to very aggressive filtering
which might lead to insufficient coverage of the entire data distribution. (right) We find a sampling temperature 7=10 to be optimal across
the range of sampling temperatures we tested, trading-off between deterministic top-k sampling (at very high temperatures) vs random

sampling (at very low temperatures).
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I. Extended Related Works

Multimodal Data Curation. Recent works have emphasised the importance of data quality for pretraining multimodal
models [41, 48, 89, 106, 109, 153]. Canonical methods for curating high-quality training data generally involve static offline
curation include removing noisy samples [1, 2, 19, 20, 48, 69, 103, 144, 160, 178], rebalancing concept distributions [2,
114, 178], improving quality of text captions [38, 82, 87, 88, 91, 110, 111, 182, 187, 192], and using pretrained data-selector
models for filtering samples with low image-text alignment [42, 75, 101, 138, 139, 167-169, 186]. Specifically, it has been
shown that offline curation of noisy web-scale data can result in large pretraining efficiency gains [1, 2, 19, 20, 42, 69, 75, 101,
103, 138, 144, 159, 160, 167-169, 178, 186].

However, such static offline curation methods that pre-filter data do not take into account the training dynamics of the current
learner model, and hence can suffer at larger scales [53]. Some prior works tackle this by introducing data selection criteria
that account for the current state of the learner— Loshchilov and Hutter [100] proposed online batch selection, that at each step
selects training samples that have the largest learner loss. Further works extended upon this idea by exploring different sample
selection criteria, all based on the current learner state [40, 46, 67, 70, 73, 74, 81, 102, 132, 137, 143, 150, 170, 177, 197].
Further, Mindermann et al. [107] introduced the RHO-Loss that considers both current learner state and a pretrained data-
selector (reference) model. Further works extended this criterion (termed learnability scoring) and scaled it to foundation
model training [17, 31, 34, 35, 39, 66]. A key underlying goal of almost all of these prior data curation methods is to improve
training efficiency by reducing the number of samples required for pretraining. Owing to this push for training efficiency,
most pretrained reference models that are used as data selectors are typically smaller than the learner models they are used to
train [34, 35, 42]. In fact, Fang et al. [42], Gadre et al. [48], Yu et al. [186] all showed that increasing the reference model size
might even be detrimental for training a good learner model.

In this work, we show for the first time that larger reference models can indeed be used as strong data selectors, and
showcase the conditions under which this simple active data-curation method can be used as an effective distillation strategy
for training smaller learner models. Our experiments demonstrate that this can in-fact even outperform standard knowledge
distillation strategies that are the most popular methods for compressing big models into smaller, more efficient ones.
Knowledge Distillation. First introduced by Bucilua et al. [18] and further popularized by Ba and Caruana [7], Hinton
[65], knowledge distillation (KD) is a classic technique for transferring knowledge from a larger model (feacher) to another
smaller one (student), by optimizing the student to match certain outputs (logits, features, intermediate activations etc.) of the
teacher model. It has been extensively used for compressing large models into smaller, deployable ones in unimodal tasks
like image-classification [12, 22, 25, 43, 47, 63, 113, 128, 149, 158, 165] and language representation learning [5, 55, 76, 95,
134, 146, 179]. Further works have extended KD to use multiple teacher-ensembles [21, 37, 105, 135, 141, 145, 185, 200],
different distillation training objectives [68, 92, 122, 147, 151, 175, 196], and progressive multi-stage training schemes [6, 56,
93, 194, 195]. See Gou et al. [52] for a comprehensive survey of KD methods across a range of practical unimodal settings.

However, KD methods in the multimodal foundation model regime are underexplored. Some initial works [29, 44, 99,
166, 171] proposed strategies for efficiently compressing a multimodal teacher for captioning, visual question-answering
and video retrieval tasks. Sameni et al. [133] introduced SF-CLIP, a method for improving CLIP pretraining via masked
distillation, while Vasu et al. [155] proposed MobileCLIP, exploring downscaling CLIP models for mobile-deployment by
using a combination of multi-teacher contrastive-KD, synthetic captions, and data-augmentations. Wu et al. [173] further
proposed TinyCLIP—a weight inheritance method combined with an affinity-mimicking strategy for multimodal KD to yield
tiny CLIP models. Yang et al. [180] conducted an extensive empirical study (CLIP-KD) into the different objective functions
for effectively performing distillation of CLIP models, across different scales. Finally, CLIP-CID [183] uses an image semantic
balancing strategy coupled with cluster-instance discrimination for better teacher-to-student knowledge transfer during the KD
process. We compare against these methods as baselines for our experimental results in Sec. 4.

Accelerating Knowledge Distillation with Data Selection. There have been prior works attempting to make KD-based
pretraining more efficient [140, 142, 188]. Some works [9, 83, 163, 176] have investigated accelerating vanilla KD using
active learning in small-scale classification tasks. However, such approaches require a costly iterative process, involving
synthetic generation, followed by active sample selection to produce pseudo-labels from a teacher model, thereby limiting
their scalability. Another line of work studies data-selection methods for improving KD, typically using uncertainty-based
data, logit and feature selection [59, 90, 97, 123, 130, 161, 162, 172, 199], contextual retrieval and sample augmentation
from a large data pool [50, 71, 94, 98, 118, 124, 191], or influence-function based sample selection [83, 184]. Contrary to
these works, Beyer et al. [12] and Hao et al. [57] suggest that vanilla knowledge distillation provides optimal gains in the
“infinite-data regimes”. All these prior works however operate primarily in the unimodal image or text classification regime,
and none has been scaled up to multimodal foundation model training. We showcase, for the first time, that simple data
selection using online batch selection outperforms standard KD for pretraining multimodal models. We further study the



optimal strategies for combining vanilla KD and active data curation to best leverage their complementary strengths.



J. Discussion on training cost vs baselines

In this section, we describe in detail the training costs required by ACID compared to other methods. We first define Fr
as the FLOPs-per-iteration of a forward pass of the image encoder of the student model. Similarly, we define F as the
FLOPs-per-iteration of a forward pass through the student text encoder. We do not consider the cost of the forward passes of
teacher/reference models because we can cache their embeddings, as proposed in prior work [155, 155].

Given this, we compute the total FLOPs per normal IID iteration is 3(F; + F). After caching reference embeddings, scoring
the super-batch with the student model adds 4(F + Fr) for a filtering ratio of 0.8, which gives a total FLOPs / iteration of
7(Fr + Fr) (7/3x overhead compared to IID training).

In Fig. 9, we show that the ACID method trained for 3B examples outperforms Softmax-KD training at 13B examples. Even
with the 7/3x overhead, the absolute gains of using ACID are significant compared with additional IID and Softmax-KD
training. Further, the main SoTA competition, MobileCLIP [155] has additional forward and backward passes due to an
additional synthetic caption batch. This is an overhead of 3(F + F’r) - F because the initial image forward-pass can be cached
for the second batch. This gives a total FLOPs per iteration of 6(F + Fr) - F;. If we compare for example, MobileCLIP-SO
(3.70 inference FLOPs) to ACED-FO (3.30 inference FLOPs), the training per iteration of MobileCLIP-S0 = 6(2.39 + 1.32) -
2.39 =19.81 FLOPs and ACED-FO = 7(3.30) = 23.1 FLOPs. Thus ACED incurs an approx. 15% training overhead compared
with MobileCLIP. However, it is worth noting that the methods proposed in Evans et al. [34] for flexible resolution scoring
can be used to bring this training budget of ACED down drastically to well below that of MobileCLIP, with little loss in
performance. We did not implement this as it has been shown in that prior work. Additionally, although MobileCLIP may have
a slight training efficiency, their requirement for generating synthetic captions on new data is far more compute intensive than
generating embeddings via our reference-model. Finally, we highlight that in general the main goal of our work (and others) is
to maximize performance at given inference budgets as it is generally assumed that the training cost of efficient models will be
amortized over model lifetime in use.



K. Discussion

Model-based active learning and knowledge-distillation are separate techniques that have traditionally targeted two very
different problems. While active learning via online batch selection has focused on improving performance and efficiency of
large-scale foundation model pretraining, knowledge-distillation methods seek to achieve highly inference-efficient models
by transfer of knowledge from these larger foundation models. In this work, we show theoretically that in fact, active data
selection can be cast as a form of implicit knowledge-distillation where the target distribution is now a product of reference
(teacher) model probabilities and real labels. With this insight, we develop ACID, a powerful method for distilling efficient
contrastive multi-modal encoders from larger reference models via online joint-example selection [35]. Notably, this method
is a significant and initially counterintuitive departure from traditional active curation paradigms [34, 107] which typically
seek reference models that are significantly cheaper in compute compared to the student.

We empirically validate that indeed ACID is a strong form of distillation that strictly outperforms traditional forms of
knowledge-distillation in training contrastive VLMs. Given the different form of implicit distillation objective in ACID, we
further demonstrate that this is complementary with traditional softmax-based KD, arriving at a final method, ACED, which
combines the benefits of each. Using ACID we effectively distill models that achieve stronger zero-shot classification and
image-text retrieval with cheaper inference FLOPs than prior SoOTA methods.

K.1. Limitations

While we see our work as a novel, simple, and scalable paradigm for effective distillation of efficient models, our results
are limited in scope to contrastive training of VLMs. Knowledge-distillation can in theory be applied to many problems
such as supervised image classification [77], self-supervised learning [23, 54], etc. and it remains to be seen whether our
results can be transferred to these domains. Furthermore, while we have shown that we can distill SOTA models that are
efficient on a theoretical FLOPs basis, it remains to be seen whether our method can achieve SoTA results when constrained
by device latency as is necessary for many edge deployments. We leave it to future work to benchmark our method with SoTA
low-latency architectures like FastVIT [154] or MobileNet-V4 [117].
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