
Minority-Focused Text-to-Image Generation via Prompt Optimization

Supplementary Material

6. Theoretical Results
6.1. Proof of Proposition 1
Proposition 1. The objective function in Eq. (7) is equiv-
alent (upto a constant factor) to the negative ELBO w.r.t.
log pθ(ẑ0(zt, Cv) | C) when integrated over timesteps with
w̄s := αs/(1− αs):

T∑
s=1

w̄sJC(zt, Cv) =
T∑

s=1

Eϵ[∥ϵ− ϵθ(zs|t,0, C)∥22] (10)

⪆ − log pθ(ẑ0(zt, Cv) | C),

where zs|t,0 :=
√
αsẑ0(zt, Cv) +

√
1− αsϵ.

Proof. Remember the definition of the objective function
in Eq. (7):

JC(zt, Cv) := Eϵ

[
∥ẑ0(zt, Cv)− ẑ0(zs|t,0, C)∥22

]
.

Plugging this into the LHS of Eq. (10) yields:

T∑
s=1

w̄sJC(zt, Cv)

=

T∑
s=1

αs

1− αs
Eϵ

[
∥ẑ0(zt, Cv)− ẑ0(zs|t,0, C)∥22

]
=

T∑
s=1

αs

1− αs
Eϵ

[∥∥∥∥ 1
√
αs

(zs|t,0 −
√
1− αsϵ)

− 1
√
αs

(zs|t,0 −
√
1− αsϵθ(zs|t,0, C))

∥∥∥∥2
2

]

=

T∑
s=1

αs

1− αs
Eϵ

[∥∥∥∥√1− αs√
αs

(ϵ− ϵθ(zs|t,0, C))
∥∥∥∥2
2

]

=

T∑
s=1

Eϵ[∥ϵ− ϵθ(zs|t,0, C)∥22],

(11)

where the second equality is from the definitions of zs|t,0
and ẑ0(zs|t,0, C):

zs|t,0 :=
√
αsẑ0(zt, Cv) +

√
1− αsϵ

ẑ0(zs|t,0, C) :=
1

√
αs

(zs|t,0 −
√
1− αsϵθ(zs|t,0, C)).

Note that the last expression in Eq. (11), which is the
same as the RHS of Eq. (10), is equivalent (up to a
constant) to the expression of the negative ELBO w.r.t.
ẑ0(zt, Cv) [20, 28]. The distinction here is that now we
use a text-conditional diffusion model ϵθ(·, C) that approx-
imates log pθ(·|C). This completes the proof.

6.2. Theoretical issues on Eq. (6)
We continue from Sec. 3.3 to scrutinize the theoretical
challenges that arise in the naively-extended optimization
framework in Eq. (6). To proceed, we first restate the objec-
tive function in Eq. (6):

J (zt, Cv) := Eϵ

[
∥ẑw

0 (zt, Cv)− sg(ẑw
0 (z

w
s|t,0, Cv))∥

2
2

]
.

Remember that we identified three theoretical issues
that impair the connection to the target log-likelihood
log pθ(z0|C): (i) the reliance on the CFG-based clean pre-
dictions; (ii) obstructed gradient flow through the second
term in the squared-L2 loss; and (iii) the incorporation of
Cv within the second term in the loss.
CFG-based clean prediction. We start by examining the
first point, the pathology due to the CFG-based clean pre-
dictions. Suppose we incorporate the CFG-based clean pre-
dictions ẑw

0 in our framework Eq. (7), in place of the non-
CFG terms ẑ0. The objective function then becomes:

J w
C (zt, Cv) := Eϵ

[
∥ẑw

0 (zt, Cv)− ẑw
0 (z

w
s|t,0, C)∥

2
2

]
.

To see its connection to log-likelihood, let us consider the
weighted sum of this objective with w̄s := αs/(1 − αs)
(as in Proposition 1). Manipulating the averaged objective
similarly as in Sec. 6.1 then yields:

T∑
s=1

w̄sJ w
C (zt, Cv)

=

T∑
s=1

w̄sEϵ

[
∥ẑw

0 (zt, Cv)− ẑw
0 (z

w
s|t,0, C)∥

2
2

]
=

T∑
s=1

αs

1− αs
Eϵ

[∥∥∥∥ 1
√
αs

(zw
s|t,0 −

√
1− αsϵ)

− 1
√
αs

(zw
s|t,0 −

√
1− αsϵ̃

w
θ (z

w
s|t,0, C))

∥∥∥∥2
2

]

=

T∑
s=1

Eϵ[∥ϵ− ϵ̃wθ (
√
αsẑ

w
0 (zt, Cv) +

√
1− αsϵ, C)∥22].

(12)

Observe that in the RHS of Eq. (12), we see the CFG
noise estimation term ϵ̃wθ , instead of ϵθ as in Eq. (11).
This comes from the use of ẑw

0 (z
w
s|t,0, C) in the second

term of the squared-L2 loss. Since ϵ̃wθ represents a distinct
probability density, say p̃θ(· | C), the averaged objective
in Eq. (12) is no longer connected to our focused condi-
tional log-likelihood log pθ(· | C).

One may wonder whether the use of CFG for the first
term in the squared-L2 loss of Eq. (7) is safe. However, we
claim that it is also problematic. To show this, we derive
the associated log-likelihood, which is immediate with the
algebra used for Eq. (12):

T∑
s=1

w̄sEϵ

[
∥ẑw

0 (zt, Cv)− ẑ0(z
w
s|t,0, C)∥

2
2

]
⪆ − log pθ(ẑ

w
0 (zt, Cv) | C).

We see that now the diffusion model (represented by pθ)
should estimate the conditional log-density w.r.t. the CFG
clean prediction ẑw

0 (zt, Cv). We argue that this estimation
may be inaccurate, since the CFG clean sample in the T2I
context is potentially off-manifold. As analyzed in Chung
et al. [7], the CFG clean prediction ẑw

0 (zt, Cv) is in fact an
extrapolation between ẑ0(zt, Cv) and ẑ0(zt) (controlled by
w). As a result, it may deviate from the data manifold, par-
ticularly for high w values commonly used in standard T2I
scenarios; see Figure 3 in Chung et al. [7] for details. This
off-manifold issue is especially pronounced during the ini-
tial phase of inference, as also reported in other studies [27].
See Tab. 2 for experimental results that support this claim.
Obstructed gradient. Now we move onto the second issue.
From the above analysis, we saw that the noise prediction
in the second term is crucial for relating the objective func-
tion to the log-likelihood, meaning that allowing gradient
flow through the second term is essential for accurate likeli-
hood optimization. However, blocking the gradient via the
stop-gradient on the second term contradicts this theoretical
intuition. We found that the use of stop-gradient actually
degrades performance; see Tab. 2 for instance.
Cv in the second term. The reasoning behind the third chal-
lenge follows naturally from the previous analyses. In this
case, the corresponding log-likelihood term can be derived
as:

T∑
s=1

w̄sEϵ

[
∥ẑ(zt, Cv)− ẑ0(zs|t,0, Cv)∥22

]
⪆ − log pθ(ẑ0(zt, Cv) | Cv).

We see that Cv appears in conditioning variable, which di-
verges from our interest of approximating log pθ(· | C).
See Tab. 2 for experimental results that corroborate this.

7. Supplementary Details

7.1. Details on the metric in Um and Ye [52]
We continue from Sec. 3.3 to provide additional details on
the likelihood metric developed by Um and Ye [52]. This
original version is defined on pixel space x0 ∈ Rd (rather
than latent domain z0 ∈ Rk as ours), formally written

as [52]:

J (xt; s) := Eϵ

[
d(x̂0(xt), x̂0(xs|t,0))

]
,

where xt is a noisy pixel-domain image, and x̂0(xt)
represents a clean estimate of xt: x̂0(xt) := (xt −√
1− αtϵ

′
θ(xt))/

√
αt, where ϵ′θ denotes a pixel diffusion

model (different from our ϵθ). Here xs|t,0 indicates a
noised version of x̂0(xt) according to timestep s: xs|t,0 :=√
αsx̂0(xt) +

√
1− αsϵ, and x̂0(xs|t,0) is a denoised

version of xs|t,0. d indicates a discrepancy metric (e.g.,
LPIPS [58]). This quantity is interpretable as a reconstruc-
tion loss of x̂0(xt), and theoretically, it is an estimator of
the negative log-likelihood of x̂0(xt) [52].

Similar to ours, the authors in Um and Ye [52] employs
this metric as a guidance function for minority sampling,
sharing similar spirit as ours. In doing so, they propose sev-
eral techniques such as stop-gradient, learning-rate schedul-
ing, and the incorporation of LPIPS as d. Their proposed
metric for the guidance function is expressible as:

J (xt; s) := ηtEϵ

[
LPIPS(x̂0(xt),sg(x̂0(xs|t,0)))

]
,
(13)

where ηt indicates learning rate at time t designed to de-
crease over time, and LPIPS is the perceptual metric pro-
posed by Zhang et al. [58]. Although this approach of-
fers considerable advantages in traditional image genera-
tion tasks (such as unconditional generation), it is not opti-
mized for T2I generation, which presents unique challenges
and requires more specialized techniques. This is confirmed
by our experimental results, where a straightforward exten-
sion of their framework yields only modest performance im-
provements. See Tab. 2 and Tab. 4b for details.

7.2. Implementation details
Pretrained models and baselines. We employed the offi-
cial checkpoints provided in HuggingFace for all three pre-
trained models. For the null-prompted DDIM baselines, we
employed “commonly-looking” as the null-text prompt for
all three pretrained models. The CADS baselines were pri-
marily obtained using the recommended settings in the pa-
per [42], while we adjusted the hyperparameters on SDXL-
Lightning for adaptation to distilled models. Specifically,
we set τ1 = 0.8, τ2 = 1.0, and s = 0.1, while keeping other
settings unchanged. For SGMS, we respected the original
design choices (like the use of sg) and tuned the remaining
hyperparameters to attain the optimal performance in the
T2I context. In particular, we used the squared-L2 loss as
the discrepancy metric and employed s = 0.75T . For their
latent optimizations, we employed Adam optimizer [24] (as
ours) with learning rates between 0.005 and 0.01. Similar
to ours, latent updates were performed intermittently, with
N = 3 (i.e., one update per three sampling steps). Each

Target CS ↑ IR ↑ LL ↓
Text 31.3503 0.2406 0.9263
Null-text 31.1089 0.1575 1.0175
Token (ours) 31.6465 0.2744 0.9006

(a) Influence of optimization target

Method CS ↑ IR ↑ LL ↓
Unoptimized 31.4395 0.1845 1.0465
Naive (Eq. (6)) 30.2994 -0.1944 0.9245
Ours (Eq. (7)) 31.7369 0.2839 0.9230

(b) Impact of objective function J

Type CS ↑ IR ↑ LL ↓
Default 31.5154 0.2492 0.9355
Gaussian 31.5054 0.2405 0.9429
Word init 31.7369 0.2839 0.9230

(c) Effect of initializing v

Table 4. Impact of key design choices. “CS” denotes ClipScore [17], and “IR” is Image-Reward [53]. ‘LL’ indicates log-likelihood.
“Text” is the optimization framework focused on updating the text-embedding C, and “Null-text” refers to the one that adjusts the null-text
embedding (as in [33]). “Unoptimized” corresponds to the standard DDIM sampler. “Default” denotes the case that simply employs
the default embedding assigned with an added learnable token, while “Gaussian” initializes v from a multivariate Gaussian distribution
constructed using the mean and variance of the token embeddings from the text-encoder T . “Word init” indicates initializing with a specific
word embedding. We used SDv1.5 for the results herein.

Target CS ↑ IR ↑ LL ↓
Eq. (7) 31.3658 0.7207 0.5449
Eq. (8) 31.4194 0.7331 0.5449

(a) Influence of sg-trick

Type CS ↑ IR ↑ LL ↓
s = 0.75T 31.4534 0.1569 0.9469
s = T − t 31.7369 0.2839 0.9230

(b) Impact of adaptive s

Type CS ↑ IR ↑ LL ↓
C 31.7548 0.2293 0.9744
Cv∗ 31.7871 0.2858 0.9511

(c) Effect of using C

Table 5. Effectiveness of our new techniques. “C” refers to the use of C during sampling steps without prompt optimization (when
incorporating an intermittent prompt update, i.e., N > 1). On the other hand, “Cv∗” refers to the use of optimized token embeddings in the
latest steps. Our results show that the proposed design choices consistently outperform naive approaches. The results in (a) were obtained
using SDXL-Lightning, while SDv1.5 was employed for (b) and (c).

latent optimization consisted of three distinct update steps:
K = 3.
Evaluations. The ClipScore values reported in our paper
were due to torchmetrics3. For PickScore and Image-
Reward, we employed the implementations provided in the
official code repositories45. Precision and Recall were com-
puted with k = 5 using the official codebase of Han et al.
[16]6. The computations of Density and Coverage were
based on the authors’ official codebase7. The log-likelihood
values were evaluated based on the implementation of Hong
et al. [21]8. In-Batch Similarity that we used in the diversity
optimization (in Tab. 3) were computed with the repository
of Corso et al. [8]9.
Hyperparameters. Our results were obtained using s =
T − t, and we used Adam optimizer with K = 3, simi-
lar to SGMS. Learning rates were set between 0.001 and
0.002 across all experiments. We shared the same intermit-
tent update rate of N = 3 with SGMS. For initializing v, we
shared the same word embedding for “cool” for the main re-
sults (presented in Tab. 1). The number of learnable tokens
for our approaches was set to 1. As described in Sec. 3.3, we
globally used λ = 1 across all experiments. For the exper-

3https://lightning.ai/docs/torchmetrics/stable/
multimodal/clip_score.html

4https://github.com/yuvalkirstain/PickScore
5https://github.com/THUDM/ImageReward
6https://github.com/hichoe95/Rarity-Score
7https : / / github . com / clovaai / generative -

evaluation-prdc
8https : / / github . com / unified - metric / unified _

metric
9https://github.com/gcorso/particle-guidance

iments on SDXL-Lightning that involves two distinct text-
encoders, we employed a single Adam optimizer to jointly
update both embedding spaces to minimize parameter com-
plexity. We also synchronized other design choices for the
two encoders, e.g., sharing the same initial token embed-
ding.
Computational complexity. The inference time for DDIM
is approximately 1.136 seconds per sample, with CADS
requiring a similar amount of time. The complexities of
SGMS and our approach are rather higher due to the in-
clusion of backpropagation and iterative updates of latents
or prompts. Specifically, SGMS takes 5.756 seconds per
sample, while our sampler requires slightly more time –
6.205 seconds per sample – which we attribute to the ad-
ditional backpropagation pass introduced by our removal of
gradient-blocking. All computations herein were performed
on SDv2.0 using a single NVIDIA A100 GPU.
Other details. Our implementation is based on Py-
Torch [37], and experiments were performed on twin
NVIDIA A100 GPUs. Code is available at https://
github.com/soobin-um/MinorityPrompt.

8. Ablations, Analyses, and Discussions

8.1. Additional ablation studies

Tab. 4 investigates the impact of some key design choices in
our framework. Specifically, Tab. 4a highlights the benefits
of optimizing small sets of token embeddings, which out-
perform alternatives targeting text or null-text embeddings
in both text alignment and log-likelihood. The advantage of
using the proposed objective function Eq. (7) is exhibited

https://lightning.ai/docs/torchmetrics/stable/multimodal/clip_score.html
https://lightning.ai/docs/torchmetrics/stable/multimodal/clip_score.html
https://github.com/yuvalkirstain/PickScore
https://github.com/THUDM/ImageReward
https://github.com/hichoe95/Rarity-Score
https://github.com/clovaai/generative-evaluation-prdc
https://github.com/clovaai/generative-evaluation-prdc
https://github.com/unified-metric/unified_metric
https://github.com/unified-metric/unified_metric
https://github.com/gcorso/particle-guidance
https://github.com/soobin-um/MinorityPrompt
https://github.com/soobin-um/MinorityPrompt

Init word CS ↑ IR ↑ LL ↓
“uncommon” 31.6971 0.2825 0.8868

“special” 31.6178 0.2922 0.9342
“cool” 31.7369 0.2839 0.9230

(a) Sensitivity to the initial word

Position CS ↑ IR ↑ LL ↓
– 31.4395 0.1845 1.0465

Prefix 31.5519 0.2809 0.9249
Postfix 31.7369 0.2839 0.9230

(b) Impact of the position of S

of tokens CS ↑ IR ↑ LL ↓
1 31.6465 0.2744 0.9006
2 31.5866 0.2204 0.9163
4 31.4989 0.2679 0.9419

(c) Effect of # of learnable tokens

Table 6. Exploring the design space of learnable tokens. “Init word” indicates the word embedding used for initializing v. “–” refers
to standard DDIM sampling without prompt optimization. “Prefix” denotes prepending the placeholder string S to P , while “Postfix”
indicates appending it to the end of P . “# of tokens” represents the number of tokens assigned to the string S. We observe that the
proposed approach is not highly sensitive to the choice of initial word, and as suggested, attaching S at the end of the prompts yields the
best performance. Additionally, using a single token is sufficient to achieve performance gains. We used SDv1.5 for the results herein.

Method CLIPScore ↑ PickScore ↑ ImageReward ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑ Likelihood ↓
DDIM-SDE (i.e., Eq. (14)) 31.5806 21.5693 0.2451 0.5840 0.6940 0.6772 0.8040 1.1666
+ MinorityPrompt 31.5002 21.3508 0.2907 0.5070 0.7030 0.5452 0.7820 1.0069

DPM-Solver++(2M) [32] 31.4447 21.4659 0.2161 0.5930 0.7160 0.6666 0.8520 0.9744
+ MinorityPrompt 31.8595 21.3827 0.3035 0.5510 0.7446 0.5482 0.7910 0.8522

CFG++ [7] 31.4755 21.4490 0.1938 0.5710 0.7100 0.6400 0.8470 1.0452
+ MinorityPrompt 31.7627 21.3399 0.3062 0.5540 0.7284 0.5394 0.7670 0.9183

Table 7. Compatibility with existing ODE/SDE solvers. The term “DDIM-SDE” indicates a stochastic DDIM sampler [46] (see Eq. (14)
for definition), where we used 50 sampling steps with a CFG weight of w = 7.5. “DPM-Solver++(2M)” is a fast ODE solver introduced
by Lu et al. [32]; for this, we adhered to the recommended settings of 25 steps with a CFG weight of w = 7.5. “CFG++” represents a
DDIM sampler featuring enhanced CFG mixing recently proposed by Chung et al. [7], for which we incorporated the authors’ suggested
parameters: 50 steps with a guidance weight of λ = 0.6. We emphasize that MinorityPrompt exhibits robust compatibility and substantial
performance improvements when integrated with existing solvers, encompassing both ODE and SDE frameworks. All results were derived
using SDv1.5.

in Tab. 4b, where the naively-extended framework based
on Eq. (6) demonstrates significant performance gap com-
pared to our carefully-crafted approach. Tab. 4c explores
various initialization techniques for v. While all methods
yield substantial improvements over the unoptimized sam-
pler (see “unoptimized” in Tab. 4b for comparison), we ob-
serve that further gains can be achieved with properly cho-
sen initial words.

Tab. 5 explores the impact of our techniques developed
for further improvements in Sec. 3.3. We see consistent
enhancements over naive design choices. A key insight
from Tab. 5c is that reusing token embeddings optimized
at earlier timesteps, denoted as “Cv∗” in the table, offers
limited benefit compared to simply using the base prompts
C. This finding highlights the evolutionary nature of our
prompt-tuning framework, which supports continual up-
dates to embeddings across sampling timesteps.

Tab. 6 investigates the design choices related to learnable
tokens in our framework. Observe in Tab. 6a that our frame-
work consistently delivers significant performance gains
across different initial word embeddings. Regarding the po-
sition of S, appending it to the end of the prompts yields
better results. We speculate that prepending may have a
greater impact on the semantics of the text embeddings due
to the front-weighted nature of the training process for the

Figure 5. Trade-off analysis. The DDIM curves were calcu-
lated using a range of CFG weights. In particular, we employed:
w ∈ {1.0, 2.0, . . . , 5.0, 7.5, 9.0, 12.5}. For the SGMS base-
line [52], we fixed the CFG weight as w = 7.5 and swept the
learning rate (i.e., ηt in Eq. (13)) over [2 × 10−3, 2 × 10−2].
Similarly for MinorityPrompt, we shared the same CFG weight of
w = 7.5 while controlling the learning rate (used with AdamGrad
in Algorithm 2) over [5× 10−4, 4× 10−3]. We highlight that our
trade-off is significantly more favorable compared to the baselines
that suffer from substantial degradation when attempting to gen-
erate low-likelihood samples. We employed SDv1.5 for obtaining
the curves.

CLIP text encoders [39] employed in our T2I models. As
exhibited in Tab. 6c, a single token is sufficient to realize
the performance benefits of our approach. The performance

Figure 6. Comparison of log-likelihood distributions. The likelihood values were measured using the PF-ODE-based computation
proposed by Song et al. [48]. We observe that MinorityPrompt better produces low-likelihood instances compared to the considered
baselines across all three pretrained models.

degradation observed with increasing tokens is likely due to
their heightened influence on semantics, similar to the effect
of S’s position.

Tab. 7 evaluates the performance of MinorityPrompt
when integrated with existing ODE/SDE solvers. Specifi-
cally, we investigate three notable solvers: (i) DDIM-SDE,
(ii) DPM-Solver++(2M)[32], and (iii) CFG++[7]. DDIM-
SDE denotes a stochastic version of the DDIM sampler, for-
mally written as [46]:

zt−1 =
√
αt−1ẑ0(zt) +

√
1− αt−1 − σ2

t ϵθ(zt) + σtϵt,

(14)

where σt :=
√
(1− αt−1)/(1− αt)

√
1− αt/αt−1 and

ϵt ∼ N (0, I). We omit the dependence of ẑ0 and ϵθ on
C for simplicity.

Observe in Tab. 7 that MinorityPrompt consistently en-
hances the baseline versions of each solver, exhibiting the
same trend we saw in our main results (e.g., in Tab. 1) evalu-
ated with the baseline DDIM. This demonstrates the robust-
ness and adaptability of our approach, further emphasizing
its practical significance as a method that can be seamlessly
integrated with a range of powerful solvers. The results
also demonstrate that our framework is effective even with
a small number of sampling steps (e.g., 25 steps), as evi-
denced by its superior performance when applied to DPM-
Solver++(2M).

8.2. Trade-off analysis
We explore the trade-off characteristics of our framework
controlled by the learning rate (used with AdamGrad in Al-
gorithm 2). For comparison, we present the trade-off perfor-
mances of two key baselines: DDIM and SGMS [52]. For
DDIM, we evaluate the performance across various CFG
weights w to examine its ability to produce low-likelihood

Method Text alignment ↑ Uniqueness ↑ Image quality ↑
DDIM 4.1159 2.6029 3.8725
DDIM + null 3.8986 2.6841 3.7768
CADS [42] 3.8029 2.9362 3.6696
SGMS [52] 3.6667 3.1217 2.9246
MInorityPrompt 4.2145 4.2812 3.8565

Table 8. User study results. We present human evaluation results
focusing on three key aspects: (i) Text alignment, (ii) Uniqueness
(i.e., the degree of minority representation), and (iii) Image qual-
ity. Feedback was collected from 23 participants, where they were
asked to rate 15 image sets each containing generated outputs by
5 distinct methods. Ratings were provided on a scale from 1 to 5.
We see a consistent performance benefit of ours, with a significant
improvement in the uniqueness of generated samples while main-
taining text alignment and image quality.

instances. While for the SGMS baseline, we adjusted the
learning rate (i.e., ηt in Eq. (13)) with a fixed CFG weight
of w = 7.5. The evaluation of ours was conducted under a
similar condition as SGMS, with a fixed CFG weight (i.e.,
w = 7.5) and varying learning rates.

Fig. 5 shows the trade-off performances of the consid-
ered three approaches. Observe that the trade-off achieved
by our framework significantly outperforms the baselines
that experience substantial quality degradation when gen-
erating low-likelihood instances. A notable point is that
SGMS often enters a degeneration regime at high learning
rates, where further increases fail to yield lower-likelihood
samples. In contrast, our framework does not exhibit such
pathological behavior, demonstrating the robustness of the
proposed approach compared to existing baselines. Also,
we see the effect of controlling the learning rate within
our framework: a higher learning rate tends to produce
instances with lower likelihoods, accompanied by some
degradation in text alignment and sample quality.

8.3. Limitations and discussion
A disadvantage is that our framework introduces addi-
tional computational costs (similar to [52]), particularly
when compared to standard samplers like DDIM. As noted
in Sec. 7.2, this is mainly due to the incorporation of back-
propagation and iterative updates of prompts. Additionally,
the removal of gradient-blocking, aimed at restoring the the-
oretical connection to the target conditional density, further
contributes to the overhead. Future work could focus on op-
timizing these processes to reduce computational demands.
One potential approach is to develop an approximation of
our objective that mitigates the need for extensive back-
propagation while maintaining its alignment with the target
log-likelihood.

9. Additional Experimental Results
9.1. Log-likelihood distributions
Fig. 6 exhibits the log-likelihood distributions for Minori-
tyPrompt and the baseline models across all three pretrained
architectures. We see that MinorityPrompt consistently pro-
duces lower log-likelihood instances, further demonstrating
its improved capability of generating minority samples. The
distributions for SDXL-Lightning are more dispersed than
in other scenarios, which may be attributed to the larger
latent space upon which SDXL-Lightning is based. The
competitive results compared to SGMS observed in SDXL-
Lightning may arise from the limited optimization oppor-
tunities available in distilled models (as discussed in the
manuscript).

9.2. User preference study
For a more comprehensive evaluation of our approach from
the perspective of human preference, we conducted a user
study based on participant feedback. Specifically, we asked
23 participants to evaluate 15 sets of images generated by
five distinct methods, rating each image set on three key
aspects: (i) Text alignment, (ii) Uniqueness (i.e., the degree
of minority representation), and (iii) Image quality. Ratings
were provided on a scale from 1 to 5.

Tab. 8 exhibits the detailed user study results. Notably,
MinorityPrompt demonstrates a consistent performance ad-
vantage, as observed in the main results (e.g., Tab. 1), by
significantly enhancing the uniqueness of generated sam-
ples with only marginal compromises in text alignment and
image quality. This further validates the effectiveness of our
approach as a text-to-image minority generator.

9.3. Additional generated samples
To facilitate a more comprehensive qualitative comparison
among the samplers, we provide an extensive showcase of
generated samples for all the focused T2I pretrained mod-
els. See Figures 7-9 for details. In addition, we exhibit sam-

ples generated using various diversity-focused approaches
(discussed at the end of Sec. 4.2); see Fig. 10 for further
details.

Figure 7. Generated samples on SDv1.5. Generated samples from three distinct samplers: (i) DDIM [46]; (ii) SGMS [52]; (iii) Minori-
tyPrompt (ours). Random seeds were shared across all three methods.

Figure 8. Generated samples on SDv2.0. Generated instances from three different techniques: (i) DDIM [46]; (ii) SGMS [52]; (iii)
MinorityPrompt (ours). We shared the same random seeds across all three approaches.

Figure 9. Additional generated samples on SDXL-Lightning. Generated samples from three different approaches: (i) DDIM [46]; (ii)
SGMS [52]; (iii) MinorityPrompt (ours). We employed the same initial noises across all three samplers.

Figure 10. Generated samples from diversity-enhancing approaches on SDv1.5. Samples generated using three distinct methods: (i)
DDIM [46]; (ii) CADS [42]; (iii) Ours (i.e., Eq. (9)). All samplers shared the same initial noise for generation.

	Theoretical Results
	Proof of Proposition 1
	Theoretical issues on Eq. (6)

	Supplementary Details
	Details on the metric in um2024self
	Implementation details

	Ablations, Analyses, and Discussions
	Additional ablation studies
	Trade-off analysis
	Limitations and discussion

	Additional Experimental Results
	Log-likelihood distributions
	User preference study
	Additional generated samples

