
Object-aware Sound Source Localization via Audio-Visual Scene Understanding
–Supplementary Material–

This manuscript provides additional implementation details
and additional results of our proposed method. In Section 1,
we elaborate on the additional implementation details of our
method. Section 2 presents additional experimental results.
Moreover, Section 3 shows additional visualization results.
Note that [PXX] indicates the reference in the main paper.

1. Additional Implementation Details
As mentioned in the main paper, we utilize the ResNet-18
[P12] for the audio encoder. At this time, since the audio
spectrogram has only one channel, we modify the first con-
volution layer of the audio encoder to have an input channel
of 1 and an output channel of 64, utilizing a kernel size of
7, stride of 2, and padding of 3. Additionally, we employ
the Adam optimizer, setting the parameters (β1, β2) to (0.9,
0.999), which are the standard values for Adam. Following
[P3], we set the hyperparameters αp = 0.65, αn = 0.4,
and ω = 0.03 mentioned in Section 3.3 of main paper. For
our Object Region Isolation loss Lori in Section 3.4 of main
paper, we utilize the Sinkhorn algorithm [P6] with a max-
imum of 100 iterations. Since a reference associated map
Sr is a 2D spatial region, we incorporate both the pixel in-
tensity differences and the Euclidean distance between the
spatial coordinates of each element during the distance ma-
trix computation.

We utilize a Multimodal Large Language Model to gen-
erate foreground captions for sound-making objects and
background captions for non-sound-making objects in di-
verse and complex scenarios. As shown in Table 5, we pro-
vide prompts to guide audio-visual understanding across
the following scenarios: (1) Scenarios with multiple ob-
jects, including a sound-making one, (2) Scenarios with vi-
sually similar objects, distinguishing sound-making ones,
and (3) Scenarios with multiple sound-making elements.
These generated foreground and background captions are
employed to facilitate the learning of fine-grained audio-
visual correspondence. Examples of the generated captions
are provided in Section 3.

Algorithm 1 provides additional details on the Object
Region Isolation loss Lori described in Section 3.4 in main
paper. It clarifies how spatial distinctiveness is enforced
between sound-making object regions and background re-
gions by minimizing overlaps through Wasserstein Distance
computation using the Sinkhorn algorithm.

2. Additional Experiments
Evaluating Generalization Across Different MLLMs.
We evaluate the generalization capability of our method

Algorithm 1 Object Region Isolation Loss Function

Require: Fv ∈ Rw×h×c,Fr ∈ R(K+1)×c

Ensure: S̄r = Sim(Fv,Fr) ∈ Rwh×(K+1),L = 0
for i, j ∈ K + 1, i ̸= j do

L = L+ Sinkhorn(S̄r[:, i], 1− S̄r[:, j])
end for

Results: Lori = L

Method MLLM CAP(%) CloU@0.3(%) AUC(%)
NoPrior [P18] – 32.5 46.9 29.2

Proposed
Method

LLaVa-NeXT [1] 41.4 49.8 42.2
Qwen2-VL [3] 43.1 54.4 43.9
InternVL2 [P5] 45.9 55.2 44.8

Table 1. Experimental results on the VGGSound-Duet test set us-
ing different Multimodal Large Language Models (MLLMs).

Method Text Encoder CAP(%) CloU@0.3(%) AUC(%)
NoPrior [P18] – 32.5 46.9 29.2

Proposed
Method

CLIP [4] 43.7 54.0 42.7
BERT [5] 45.9 55.2 44.8

Table 2. Experimental results on the VGGSound-Duet test set us-
ing different text encoders for generated caption.

by conducting experiments with various Multimodal Large
Language Models (MLLMs). In addition to InternVL2.0-
8B [P5], which is used in the main paper, we include two
widely adopted MLLMs in recent research: LLaVA-NeXT
[1] with Mistral-7B [2] and Qwen2-VL-7B [3]. These two
models are also guided using the same prompt to generate
foreground and background captions.

As shown in Table 1, we test the models on the
VGGSound-Duet [P2] test set, where InternVL2.0-8B
achieves the best performance, followed by Qwen2-VL
and LLaVA-NeXT. While performance slightly varies
depending on the chosen MLLM, all models consistently
outperform the current state-of-the-art method, NoPrior
[P18]. These results demonstrate that our approach is
effective across diverse MLLMs, consistently showing su-
perior performance in generating fine-grained audio-visual
correspondences.

Performance Variation with Different Text Encoders.
We present an additional experiment to validate the ro-
bustness of our approach with various text encoders for
generated captions in Section 3.2 of the main paper. While
the main paper used BERT as the default text encoder, we
additionally adopt CLIP [4], widely used for image-text
multimodal learning, to further investigate the generaliza-
tion ability of our method across different text encoders.
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Figure 1. Additional visualization results for VGGSound-Duet test set.

Method λ1 λ2 CAP(%) CloU@0.3(%) AUC(%)
NoPrior [P18] – – 32.5 46.9 29.2

Proposed
Method

1

10 42.2 51.1 40.6
1 45.4 53.5 44.4

0.1 45.9 55.2 44.8
0.01 45.2 51.5 42.2

10

0.1

43.1 53.3 42.9
1 45.9 55.2 44.8

0.1 43.2 51.3 42.1
0.01 42.6 50.1 41.2

Table 3. Experimental results on the VGGSound-Duet test set us-
ing different balancing parameters λ1 and λ2.

We utilize the VGGSound-Duet test set to compare per-
formance. As shown in Table 2, our method significantly
outperforms the existing approaches across both tested
text encoders. These results indicate the effectiveness
and generalization ability of our model in incorporating
different text encoder models.

Experiment on Balance Parameters λ1 and λ2 used in
Loss Function. To evaluate the effect of the balancing
parameters λ1 and λ2 in our total loss function in Section
3.5 of main paper, we perform an additional study. As
shown in Table 3, our model achieves optimal performance
when λ1 = 1 and λ2 = 0.1. Remarkably, our method
consistently surpasses the existing approach across a
range of balancing parameters. These results demonstrate
that even when varying the hyperparameters, our method
maintains consistently high performance with minimal

Method MLLM Training Inference

time (s) time (s) memory (GB) time (s) memory (GB)
(per image) (per iter) (per image)

T-VSL [P23] - 1.53 22.0 0.051 0.81
Ours 0.92 1.13 16.63 0.044 0.35

Table 4. The comparisons of training time, inference time, and the
number of parameters.

variation, indicating that our approach does not heavily rely
on hyperparameter tuning.

Computational Cost. We compare the computational
efficiency of our method with T-VSL [P23], which uses
AudioCLIP as its backbone. As shown in Table 4, despite
incorporating MLLMs during training, our approach main-
tains comparable efficiency to state-of-the-art methods. For
the MUSIC dataset (50K samples, 100 epochs), T-VSL
requires 47.8h for training, while our method takes 48.1h.
Importantly, MLLMs are only used at the beginning of
training for caption generation and not during inference,
ensuring real-world applicability. Our method demonstrates
improved efficiency with 13.7% faster inference time and
lower memory usage compared to T-VSL [P23], due to our
simpler architecture and the absence of MLLMs at test time.

3. Additional Visualization Results

Visualization Results on VGGSound-Duet. We provide
additional visualization results in Figure 1 to demonstrate
the effectiveness of our method in achieving fine-grained
audio-visual localization. Our approach identifies sound-



making objects, leveraging the Object-aware Contrastive
Alignment loss Loca to focus exclusively on sound-making
regions. Building on this, the Object Region Isolation loss
Lori enhances the ability of model to separate multiple
sound-making objects in multi-source scenarios, ensuring
precise isolation of each source. Together, these two loss
functions enable the model to handle diverse audio-visual
scenes effectively. These results highlight the effectiveness
of our approach in improving audio-visual localization
accuracy across a wide range of challenging scenarios.

Quality of the Generated Captions. We visualize the
generated foreground and background captions, along
with the corresponding image and audio class information.
The captions are generated using the InternVL 2.0-8B
model, guided by a carefully crafted prompt (refer to
Table 5). Foreground captions describe the sound-making
objects corresponding to the provided audio class, while
background captions capture the silent objects visible in
the image. Figure 2 demonstrates the consistency and
relevance of the captions in relation to the audio-visual
scenes, highlighting how effectively MLLMs capture both
sound-making and silent objects in diverse scenarios.

Video Demo. We provide supplementary video materials
that offer a more in-depth explanation of our method for
localizing sound-making objects in complex environments.
These videos demonstrate the real-time applicability and ro-
bustness of our approach under various conditions. We pro-
vide the results of our method with some examples from
the VGGSound-Single and VGGSound-Duet datasets, il-
lustrating its ability to distinguish sound-making objects
from silent ones effectively. Please refer to the video titled
“CVPR2025 SubmissionID 698 Supp Demo.mp4”.
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Analyze the provided image along with its associated class label, which identifies an object or element in the image
that emits sound. The scene is complex, containing multiple objects, and requiring categorization based on the
examples below.

Instructions:
1. Identify foreground (sound-related) elements: These are objects in the image emitting sounds that match the class
description.
2. Identify background (sound-unrelated) elements: These are distinct objects visible in the image but unrelated to the
sound described by the class.
3. Focus strictly on what is visible in the image. Do not infer or describe unseen objects.

Output Format:
The response must always be in JSON format with structured sentences that start with ‘an image of....’. If there are two or
more class labels (separated by commas), the foreground must be provided as a list of sound-making elements.

Examples:
(1) Scenario with multiple objects, including a sound-making one
Input:
- image: example image 1
- class label: man blowing whistle
Output:

{
"foreground": "an image of a man blowing a whistle",
"background": "an image of mountains, desert landscape, and sky"

}

(2) Scenario with visually similar objects, distinguishing sound-making ones
Input:
- image: example image 2
- class label: acoustic guitar
Output:

{
"foreground": "an image of a man playing guitar",
"background": "an image of non-playing guitars, drum-set, and amp"

}

(3) Scenario with multiple sound-making elements
Input:
- image: example image 3
- class label: clarinet, violin
Output:

{
"foreground": ["an image of playing clarinet", "an image of playing violin"],
"background": "an image of the kitchen, curtains, and piano in the background"

}

Now, process the provided input following the same structure and RETURN ONLY the JSON FORMAT.

Table 5. Guiding prompt for foreground and background caption generation using a Multimodal Large Language Model (MLLM)



Generated CaptionsAudio ClassImage

femele_singing Foreground : "an image of singing female"
Background :  "an image of dining table, chairs, windows, and lamp"

race_car_auto_racing Foreground : "an image of a race car racing on a track"
Background :  "an image of spectator, fence, tree, building, and banner"

playing_erhu
Foreground : "an image of playing erhu"
Background :  "an image of framed pictures, lamp, Buddha statue, cupboard, 
decorative screens, calligraphy scroll, purple tablecloth, vase, and door"

horse_clip-clop

Foreground : "an image of a horse making a clip-clop sound"
Background :  "an image of a man wearing blue jeans and a blue shirt, an old 
beige house, large puddle on the ground, a small white bucket, and a wooden 
wheelbarrow"

playing_cello Foreground : "an image of playing cello"
Background :  "an image of room, piano, books, and carpet"

Generated CaptionsAudio ClassImage

motorboat_speedboat
_acceleration

Foreground : "an image of a motorboat"
Background :  "an image of trees, a fence, and a white truck"

playing_basson Foreground : "an image of girl playing bassoon"
Background :  "an image of couch, books, computer desk, laptop, and table"

playing_trombone Foreground : "an image of a man playing the trombone"
Background :  "an image of  brass musical instruments, room curtain, shelf, and a microphone"

playing_acoustic_guitar

playing_electric_guitar

Foreground : "an image of a person playing an acoustic guitar"
Background :  "an image of a framed picture of a guitar, trophy holders, piano, lamp, posters 
on the wall, and books on a shelf"

Foreground : "an image of man playing an electric guitar"
Background :  "an image of guitar wall, amplifier, and studio equipment"

Figure 2. Visualization results of generated captions on VGGSound train set.
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