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S1. Sample outputs from SelfLUID-Net

i
|

(a) Input LLUW video (b) Restored image and depth map

Figure S1. Sample outputs (Restored image and depth map) from
SelfLUID-Net for an input LLUW video sequence. Best viewed
when the document is opened in Adobe Reader.

SelfLUID-Net can process a single image in 16ms. i.e., it
can process around 62 frames per second. For a given in-
put image of size 512x512, our network will give the re-
stored image and depth map in 16 ms. For a video, each
frame should be sequentially passed to the network to get
the corresponding restored image and depth map to form a
restored output video. Such an output for an input video of
frame rate 30 fps with image dimensions 1024x512 is given
in Fig. S1. Please use Adobe Reader to view the video.

S2. Statistics of ULVStereo

Underwater Low-light Stereo Video (ULVStereo) dataset
contains stereo pairs of low-light and normally lit under-
water (UW) images. It has 10 pairs of videos (ULVI to
ULV 10) where each pair (low-light and normally lit videos)
is captured around a submerged UW structure (natural or
man-made rock). Each 3D structure differs in shape and
size (span) and presents varied appearances from different
viewpoints, providing ULV Stereo with a rich scene diver-
sity. The number of frames and a sample stereo image

ULV, 1293 x2 = 2586, Training

ULV2, 1402x2 = 2804, Training

ULV3, 927 x2 = 1854, Training ULV4, 15662 = 3132, Training

ULVS, 741 x2 = 1482, Testing

ks

ULV7, 1110x2 = 2220, Training

ULVY, 941 x2 = 1882, Training

Table S1. Dataset summary of ULVStereo with sample frames
from the stereo pairs (lowlight, normally-lit) of each video. Video
name, Number of frames, and whether they are used for training
or testing are specified for each video.

pair from each set are given in Table SI. Low-light and
normally-lit stereo image pairs share the same scene but
with different levels of illumination. The table contains
information on which videos are utilized for training and
which are allocated for testing. The captured images are of
resolution 1920x 1080 pixels. There are a total of 20956
frames in the ULV Stereo dataset. We did calibration in-air
for clear visibility of checkerboard corners and pattern sta-
bility. Our calibration did not account for refraction in wa-
ter. However, the GoPro camera we used has a short focal
length (f~16-34mm). Moreover, we trained our network
with central image patches (800x800), where rays remain
largely parallel to optical axis as the objects we imaged were
at distances significantly greater (3-4m) than f, thus reduc-
ing refraction effects. The three main features of our dataset
are 1) The image pairs are of the same scene taken simulta-
neously and with different illumination; 2) Images in a pair
contain disparity that provides depth information; and 3) It
contains videos that cover different underwater structures.
These features of ULV Stereo should enable researchers in
UW domain to harness it for many applications like under-
water low-light image enhancement, depth estimation, 3D
UW structure recovery, lowlight underwater neural radiance
fields and Gaussian splatting, etc.
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Figure S2. Two sequential processing methods ((a) and (b)) have been done on a LLUW image input (LLUW1) to get restored image

(Resl1) as well as depth map (Dep1 and Dep2). SelfLUID-Net returns the restored image (Resours) and depth map (Depth,

urs)- Please refer

to the names of outputs (in red) from each stage to see the visual outputs in Fig. S3 and S4.
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Figure S3. The outputs of each stage from sequential processing-1
(names are given in Fig. S2 in red) for input LLUW images from
Seathru dataset [1]. Note that our restored image and depth map
are better than those obtained from the sequential processing.

S3. Sequential processing vs Self LUID-Net

SelfLUID-Net outputs the restored image and depth map
simultaneously from a single LLUW image. UW image
restoration methods devised for normally-lit UW images
struggle due to low-light effects in LLUW images, while
LL restoration methods devised for terrestrial images strug-
gle due to haze present in the UW images. Instead of us-

1(a) LLUW1

b LLT 1(c)Resl

2(a) LLUWL 2(b) LL1 2(c) Resl

2(e) Res,, 2(f) Depth,

Figure S4. The outputs of each stage from sequential processing-2
(names are given in Fig. S2 in red) for input LLUW images from
Seathru dataset [1]. Note that our restored image and depth map
are better than those obtained from the sequential processing.

ing SelfLUID-Net, another possibility is to i) sequentially
process LLUW images (UW image restoration followed by
LL image restoration and vice versa) using SOTA methods.
Then ii) estimate the depth map from the restored image ob-
tained from the earlier step using SOTA method for depth



PSNR(dB)/SSIM pISI-MSE
Sequential processing-1 15.86/0.48 Depl: 0.43/0.54
Dep2: 0.26/0.66
Sequential processing-2 16.78/0.52 0.35/0.60
Ours: SelfLUID-Net 17.21/0.58 0.52/0.40

Table S2. Quantitative comparisons of image restoration and depth
estimation accuracy for two sequential processing methods and
our method. Average PSNR/SSIM is calculated on images from
UIEByak [11] dataset and p/SI-MSE is calculated on Seathru [1]
dataset.

estimation. The two types of sequential processing (Se-
quential processing-1 with LL restoration followed by UW
restoration, and Sequential processing-2 with UW restora-
tion followed by LL restoration) are given in Fig. S2. All
the Deep learning methods shown in Fig. S2 are trained us-
ing images from our ULV Stereo dataset. SCI [15] is trained
using LLUW images, USe-ReDI-Net [20] is trained using
normally lit UW Images, and HRDepth [14] is trained us-
ing restored UW images (from USe-ReDI-Net). In Fig. S2,
the output of each stage and the input image are named in
red. The corresponding images from Sequential processing
1 and 2 are provided in Fig. S3 and Fig. S4, respectively.
From Fig. S3, it can be seen that the LL image restora-
tion method removes lowlight effects from the image, but
is unable to remove haze. It can also be seen that some
color information is lost after LL image restoration. Hence,
UW image restoration after accounting for low light is not
satisfactory. The depth map estimated from the sequential
processing is also inferior. Fig. S4 shows that UW image re-
covery followed by LL restoration also gives poor restored
results and the depth maps estimated from the restored out-
puts of this sequential method are again not good. In both
cases, our results are better. The metric values for both the
sequential methods are given in Table S2. Our SelfLUID-
Net has the best metric scores for both depth estimation and
restoration. Sequential processing of LLUW images pro-
vides suboptimal results as compared to SelfLUID-Net.

S4. Underwater lowlight scenarios

In underwater imaging, lowlight conditions occur due to in-
sufficient lighting during image capture. This mainly hap-
pens in two cases.
1. Near-shore situations where
(a) Natural light is insufficient at low depths, e.g., at
night time or on cloudy days, or
(b) Under normal ambient lighting but at relatively
higher depths (around 10m).
2. Off-shore situations where the available sunlight fails to
reach the deep waters.

Our method is mostly applicable to the former case in
near-shore situations. This is a very practically relevant sce-
nario as many UW expeditions without the use of external
light sources are undertaken near-shore. Our ULVStereo
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Figure S5. (a) Input UW images from deep water depths (depth
from the sea-surface is also mentioned) and (b-f) the enhanced
images obtained from different methods. URN: USe-ReDI-Net.
Note that our output results are visually good.

e R
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Figure S6. (a) Input UW images from deep water depths (depth
from the sea-surface is also mentioned) and the enhanced images
(b and d) and depth map (c and e) obtained from URN: USe-ReDI-
Net [20] and our method. Note that only our enhanced outputs are
visually good and we have better depth maps than USe-ReDI-Net
[20].

dataset was captured at a depth of 4-7m to image 3D ar-
tifacts submerged at that depth. The lowlight videos in
our dataset by adjusting the exposure settings of the cam-
era can be considered as the data captured at a lower-depth
scenario (around 4 m) with insufficient natural light (case
1(a)). Considering the attenuation of light intensity as it
travels from the sea-surface to UW objects, our captured
lowlight videos can also be interpreted as data captured at
a relatively higher-depth (around 10m) with normal ambi-
ent lighting (case 1(b)). We have successfully tested our
method on real LLUW datasets captured with normal cam-
era settings in these actual low light conditions (1(a) and
1(b)), i.e., (a) at a lower depth of Sm (FLSea [19] dataset) in
less ambient light and (b) at a higher depth of 10m (Seathru
[1] dataset). It is to be noted that, even though the train-
ing images from our ULVStereo dataset has lowlight im-
ages captured by adjusting the camera exposure settings,
our method works well on real LLUW images captured in
actual lowlight conditions.

In off-shore deep sea situations (case 2), UW images
are extremely dark. There are no publicly available real
datasets for these extreme conditions. We have collected
some underwater images from internet which are captured
very deep (around 100 m) and are included in Fig. S5 and
S6. It is to be noted that these images contain illumination
from external light sources carried by the divers. However,
they still appear relatively darker overall. We tested our
Self LUID-Net and other four methods (two self-supervised



UW methods: USUIR [4] and USe-ReDI-Net [20]; two tra-
ditional LLUW methods: ICSP [9] and L*UWE [16]) on
these deep water images. Comparison of restored outputs
from different methods is given in Fig. S5. It can be seen
that, compared to other methods, our method gives better re-
stored image outputs, even though the output contains some
overexposed area at the portions of external light source.
Along with enhanced image, USe-ReDI-Net [20] returns
depth map also. We have included a comparison of depth
map and restored image returned from USe-ReDI-Net [20]
and our SelfLUID-Net in Fig. S6. It can be seen that the
restored image outputs from USe-ReDI-Net [20] are not
good. Also, our depth map is better than USe-ReDI-Net.
Even though our network is not trained with dark deep UW
images, it performs reasonably well on such deep water im-
ages while other methods struggle.

S5. Comparison of network complexity during
training and testing

We use multiple constraints to make our self-supervision
stronger. From ablation studies, we observed that utilizing
fewer constraints results in poorer network performance.
The individual subnetworks for R-Net, L-Net, TD/TB-Net,
and beta-Net are relatively smaller networks with three to
four Conv-Norm-ReLU blocks. PoseNet has a ResNet en-
coder and a lighter decoder. But after combining all the
subnetworks, our model becomes bulky with a total train-
able parameter count of around 16.4 M. Training our net-
work using image patches of size 800x800 with a batch size
of 1 takes around 22 GB GPU memory. It is to be noted
that the entire network is used only during training. Dur-
ing inference, the single network R-Net is used to output
the restored image, and TD/TB-Net and beta-Net are used
to output the depth map requiring only around 3.1M param-
eters and 16ms to execute a 512x512 image.

Table S3. Number of trainable parameters (M) and Execution time
in milliseconds for a 512x512 image.

Mono? [5] USUIR [4] USe-ReDI-Net [20] Ours
Parameters (M) 14.2 2.2 24.7 16.4
Exec. time (ms) 25 14 18 16

The number of trainable parameters and the execution
time during testing for our method and 3 baseline methods
(Mono2 [5] which is a depth estimation method, USUIR [4]
which is an UW image restoration method, and USe-ReDI-
Net [20] which gives both restored image and depth map
from normally-lit UW image) are given in Table S3. Our
method has a higher number of trainable parameters, but
during test time, since we use a small part of the network,
our execution time is less. The number of parameters for
USUIR [4] is very less, but it performs only image restora-
tion. Mono2 [5] performs only depth estimation.

e <
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Figure S7. Failure cases for (1) depth estimation on Seathru
dataset [1], and (2) restoration on NUID dataset [9]. URN: USe-
ReDI-Net [20].

S6. Limitations

As given in Sec. S5, SelfLUID-Net contains a number of
subnetworks with a total of around 16.4 M trainable pa-
rameters. To train the network using image patches of size
800x800 with a batch size of 1, it takes around 22 GB GPU
memory. There are several hyperparameters to be tuned
which we have done using grid-search.

Figure S7 shows failure example cases for 1) depth esti-
mation (on an image from Seathru dataset [1]) and 2) image
restoration (on an image from NUID dataset [9]). Results
are given for SelfLUID-Net and the closest SOTA method
(USe-ReDI-Net [20] for depth and USUIR [4] for restora-
tion). For objects with reflective surfaces, the depth re-
turned by both USe-ReDI-Net and our SelfLUID-Net are
not good (see the encircled regions in Fig. S7:(1)). USe-
ReDI-Net struggles more as it returns a higher depth for the
whole object placed closed by, whereas our depth map is
wrong only at the color checkerboard portions which span
only a small area. In Fig. S7:(2)(a), the LLUW image con-
tains a portion of a light source. Our restored images have
artifacts around the light source since the LLUW model that
we followed is not valid in such image areas. USUIR [4]
also struggles and its restoration quality at other portions of
the image is inferior to ours.

S7. Additional results

Additional qualitative results

In additional to the qualitative results given in the main pa-
per, comparison results on more LLUW images are given
in Fig. S10 and Fig. S11 for image restoration (on two
images from ULVStereo, Seathru [1], and NUID [9], and
one image from UIEBgy,« [11]) and depth estimation (on
two images from Seathru [1], FLSea [19], and ULVStereo
datasets), respectively. In the main paper, due to space con-
straints, we have not included the restored outputs of LL
restoration method ZeroDCE [6]. But we have included its
results in Fig. S10. Even though ZeroDCE [6] removes low
light effects, UW haze is still present in their restored im-
ages (see Fig. S10:(1,3,5,7)(k)). For Seathru [1] and FLSea
[19] datasets, we have now included the depth maps re-
turned from Mono?2 [5] (it has not been included in the main
paper). Similar to other depth estimation methods for terres-
trial images (HRDepth [14] and Manydepth [22]), Mono2
also struggles due to lowlight as well as UW haze (see Fig.
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Figure S8. The predicted masks (b) to remove moving pixels in monocular videos are given for three target images (1,2,3)(a).
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Figure S9. Network structure of each block in Self LUID-Net. Inst. Norm.: Instance normalization, ¢: Number of channels in input or
output, n: Number of output nodes. Values for either n or c are specified at the bottom of the network blocks. The size of the kernel, k is

3x3 unless specified.

S11:(1,2)(1),(3,4,5,6)(g)). For all the real UW datasets that
we used for comparison, our method gives restored images
with good quality and plausible depth maps. Our consistent
and superior results with training on ULV Stereo and testing
on other datasets show its generalization ability.

Moving pixel masking

In main paper (Fig. 5), we have included one example of
the predicted mask to remove the adverse effect of moving
pixels on reprojection loss. In Fig. S8, we have included
additional examples of predicted masks for three more tar-
get images. It can be seen that pixels correspond to floating
plants (Fig. S8(1)), moving fish (Fig. S8(2)), and moving
rope (Fig. S8(3)), along with small plants on the rocks are
masked out not to affect the reprojection loss.

Additional ablations on loss terms

In the paper, we gave ablation studies mainly for our con-
tributions. i.e., for Lr & its components and Lgpa. Lree
and L4, cannot be excluded from loss calculation since they
enforce the physics of image formation. Ly, Lis, and L,
have been used in literature. Our network (n/w) with abla-
tions for these 3 losses has (PSNR/SSIM)(p/SI-MSE): No
L45:(16.9/0.54)(0.65/0.20), No L;s:(16.4/0.51)(0.59/0.21),
No L::(17.0/0.55)(0.69/0.19).

S8. Self LUID-Net network architecture

In the main paper, the block diagram for SelfLUID-Net
is given. The detailed structure of each block is given
in Fig. S9. The input LLUW image I is disentangled
into its latent components (global background light A, re-
flectance Ry, illumination Ly, transmission maps 1p and
Tg). A is estimated analytically from I using a Gaus-
sian blur-kernel. The reflectance Ry is estimated using
the reflectance network (R-Net), illumination Lj, is esti-
mated from the illumination network (L.-Net), transmission
maps Tp and T are estimated from the transmission map
networks TD-Net and TB-Net, respectively. R-Net uses
only stride-1 convolutions to avoid missing any details. As
in [20], transmission map networks use stride-2 convolu-
tions and skip connections in TD-Net and TB-Net. L-Net
has a small network structure with two conv-normalization-
ReLU blocks and returns a three-channel illumination out-
put. The outputs of R-Net and TD/TB-Net have three chan-
nels. Depth D is estimated from Tp, Tz, and the channel-
wise extinction-coefficient 5 which is estimated using (-
Net [20] from a 100x100 input image patch. 3-Net returns a
six-valued vector where a set of three 8 values corresponds
to either Tp or T'g. For training using monocular video
frames, we have used PoseNet to return the pose between
neighboring frames. For PoseNet, we use the same network



structure which was followed by monocular depth estima-
tion methods for terrestrial images [5, 25]. PoseNet outputs
a 6-dimensional camera pose output consisting of 3 rotation
angles and 3 translations.
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Figure S10. Input UW image (a) from datasets: (1,2) - ULVStereo, (3,4) - Seathru [1], (5,6) - NUID [9], (7) UIEBgax [11] with pseudo
ground truth (7(n)) for UIEB and the enhanced images obtained from different methods. Note that our output results are visually good.
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Figure S11. Input UW image (a) from datasets: (1,2) - ULVStereo, (3,4) - Seathru [1], (5,6) - FLSea [19], with ground truth ((3,4)(1) and
(5,6)(1)) for Seathru and FLSea datasets and the depth map obtained from different methods. Note that SelfLUID-Net returns plausible
depth maps [see depth maps (3,4,5,6)(k) are closer to GT (3,4,5,6)(1)].
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