
FastVLM: Efficient Vision Encoding for Vision Language Models

Supplementary Material

A. Training Setup

For experiments presented in Tab. 1, Tab. 2, Tab. 4, Tab. 5,
we perform 2-stage training with the hyperparameters listed
in Tab. 7. The model is trained for a single epoch in all
the stages. Note, in Tab. 5, we do not re-train other to-
ken pruning works, we simply report the performance of
the respective methods as they adhere to the 2-stage training
setup described in Tab. 7, which was originally introduced
in LLaVA-1.5 [49].

To showcase our model’s performance in the presence of
additional dataset, we scale both pretraining and instruction
tuning datasets in Sec. 4. For results presented in R13, R17,
R18, R25, R26 in Tab. 6, we still perform 2-stage training
described in Tab. 7, for R18 and R26, we use instruction
tuning dataset of size 1.1 million samples in Stage-2. For
results presented in R3, R4, R6, R7, R10, R11, R14, R19,
R20, R21, R27, R28, R38 and R39, we scale-up both in-
struction tuning dataset and pretraining dataset. We also in-
troduce and additional stage of pretraining with the scaled-
up dataset as described in Tab. 8. Details of 1.1 million, 6.5
million and 11.9 million instruction tuning dataset is pre-
sented in Sec. D.

Stage-1 Stage-2

Data LLaVA-1.5 558K LLaVA-1.5 665k

Learning Rate 1e-3 2e-5
Batch size 256 128
LR. schedule cosine decay cosine decay
LR. warmup ratio 0.03 0.03
Optimizer AdamW AdamW

Trainable Projector Full
modules Model

Table 7. 2-Stage training setup used in ablations for Sec. 3.

Stage-1 Stage-1.5 Stage-2

Data LLaVA-1.5 558K Recap-CC3M + 1.1M / 6.5M / 12.5MRecap-CC12M [39]

Learning Rate 1e-3 2e-5 2e-5
Batch size 256 128 128
LR. schedule cosine decay cosine decay cosine decay
LR. warmup ratio 0.03 0.03 0.03
Optimizer AdamW AdamW AdamW

Trainable Projector Full Full
modules Model Model

Table 8. 3-Stage training setup used for results with scaled-up data
in Tab. 6.

B. Architecture Details
The patch embedding layers shown in Fig. 2, consists of
7→7 depthwise convolutions with [76] style train-time over-
parameterization, followed by 1→1 pointwise convolution.
The stride for 7→7 depthwise convolution is set to 2 in or-
der to downsample the input tensor. In [78], squeeze-excite
layers were incorporated into this block; however, we found
them to negatively impact inference latency, especially for
high image resolutions, so we opted not to include them
in our model. We use the same ConvFFN layer defined
in [77], i.e. 7→7 depthwise convolutions preceding a typ-
ical FFN layer. The stem downsamples the input tensor by
factor of 4 on each side, and each patch embedding layer
downsamples the input tensor by a factor 2. Although re-
cent architectures like ViTamin [11] recommend an overall
downsampling factor of only 16, FastViTHD incorporates
an additional patch embedding layer compared to FastViT,
resulting in an overall downsampling factor of 64! for the
input tensor. In each stage, we increase the number of chan-
nels by a factor of 2 as done in FastViT and other convolu-
tional and hybrid transformer architectures. This results in
a Stage-5 with the widest MLP layers in the architecture,
performing self-attention on an input tensor which is down-
sampled by a factor of 64.

B.1. Naive Scaling
In order to scale the model size of FastViT, we simply
increased the embedding dimensions per stage to [128,
256, 512, 1024], and set the number of layers per
stage to [2, 12, 16, 6]. Patch embedding layers in
each stage use squeeze-excite layers and the MLP expan-
sion ratio is set to 3.0, following the design in [78].

C. Additional Results
We present the performance of FastVLM on text-rich
benchmarks under various training settings in Tab. 10.
FastVLM surpasses MM1 and Cambrian-1 across a wide
range of benchmarks by scaling up pretraining and instruc-
tion tuning datasets. This result highlights the quality of
visual tokens produced by FastViTHD, as FastVLM is able
to achieve these improvements with 2.8→ less visual tokens
than MM1 and with a vision encoder that is 5.1→ smaller.

C.1. Dynamic Resolution (AnyRes) Results
From Fig. 6, it is evident that VLMs prefer visual encod-
ing with fewer semantic breaks. Variants with more tiles
typically underperform compared to those with fewer tiles
and a static resolution. To further scale up input resolution,



Row Method Vision LLM Input #Visual Vis. Enc. Vision Enc. LLM
Ann. Encoder Res. Tokens Size(M)↑ Latency(ms)↑ Prefilling(ms)↑

0.5B Model Comparison

R1 nanoLLaVA ViT-SO400M Qw.1.5 384 729 430 272.1 263.3
R2 LLaVAOV [41]→ ViT-SO400M Qw.2 1152 7290 430 2721.4 11402.4
R3 FastVLM (Ours) FastViTHD Qw.2 1024 256 125 116.3 50.5
R3 FastVLM (Ours)→ FastViTHD Qw.2 2048 1280 125 581.5 336.4

1-2B Model Comparison

R4 MobileVLMv2 [18] ViT-L/14 ML. 336 144 304 127.4 458
R5 FastVLM (Ours) FastViTHD Qw.2 768 144 125 54.8 97.1

R6 DeepSeekVL [54] ViT-SO400M DS. 384 576 430 272.1 -
R7 MM1 [61]→ ViT-H - 1344 720 632 - -
R8 FastVLM (Ours) FastViTHD Qw.2 1024 256 125 116.3 116.1
R8 FastVLM (Ours)→ FastViTHD Qw.2 2048 1280 125 581.5 681.7

7B Model Comparison

R9 InstructBLIP [19] ViT-g/14 Vic. 224 32 1012 149.5 152.1
R11 FastVLM (Ours) FastViTHD Vic. 256 16 125 6.8 143.4

R12 MobileVLMv2 [18] ViT-L/14 Vic. 336 144 304 127.4 332.1
R13 ConvLLaVA [25] ConvNeXT-L Vic. 768 144 200 164.3 332.1
R14 FastVLM (Ours) FastViTHD Vic. 768 144 125 54.8 332.1
R17 FastVLM (Ours) FastViTHD Qw.2 768 144 125 54.8 391.2

R20 ConvLLaVA [25] ConvNeXT-L Vic. 1024 256 200 696.1 461.1
R26 LLaVA-1.5 [49]

ViT-L/14 Vic.
336 576 304 127.4 1170.0

R27 MobileVLMv2 [18] 336 576 304 127.4 1170.0
R28 ShareGPT4V [12] 336 576 304 127.4 1170.0
R29 ViTamin [11] ViTamin-L Vic. 384 576 333 137.6 1170.0
R30 ConvLLaVA [25] ConvNeXT-L Vic. 1536 576 200 1569.7 1170.0
R31 VILA [46] ViT-L/14 L-2 336 576 304 127.4 1169.5
R33 MM1 [61]→ ViT-H - 1344 720 632 - -
R34 LLaVA-NeXT→ ViT-L/14 L-3 672 2880 304 637.0 19709.7
R21 FastVLM (Ours) FastViTHD Vic. 1024 256 125 116.3 461.1
R36 FastVLM (Ours) FastViTHD Qw.2 1024 256 125 116.3 524.5
R36 FastVLM (Ours)→ FastViTHD Qw.2 2048 1280 125 581.5 3139.5

VLMs with Multiple Vision Encoders and 8B LLM

ConvNeXT-L 1536 200 1569.7R35 MiniGemini-HD ViT-L/14 L-3 672 2880 304 552.6 19709.7

ViT-SO400M 384 430 272.1
ConvNeXt-XXL 1024 846 2290.4

DINOv2-ViT-L/14 518 304 1171.5R36 Cambrian-1 [73]

ViT-L/14

L-3

336

576

304 127.4

1223.6

Table 9. Breakdown of prefilling latencies for recent methods. The models are grouped based on total number of visual tokens. For
models that were difficult to export or unavailable, we mark them as ’-’ in the table. “Vic.” refers to Vicuna [91], “Qw.2” refers to
Qwen2 [80] and “Qw.” refers to Qwen [3]. “L-2” refers to LLaMA-2. “L-3” refers to LLaMA-3. “ML.” refers to MobileLLaMA [17, 18].
“DS.” refers to DeepSeek LLM [20]. → For input resolution and visual tokens, we report the highest supported resolution by the respective
models as some models like LLaVA-OneVision [41] and MM1 [61] use dynamic input resolution. FastVLM models using dynamic
resolution employs a simple 2→2 grid, with tile size set to 1024. For VLMs that use multiple vision encoders, the size of each encoder is
listed independently, for TTFT, the latency from each encoder is summed up.

we train variants of FastVLM with support for dynamic in-
put resolution, where we use a tile size of 1024→1024 and
use a simple 2→2 grid. This enables the model to process
a peak input resolution of 2048→2048 using only 4 tiles,
unlike models like InternVL2 [15] which uses roughly 36
tiles to process images of resolution 2688→2688. We report
performance of FastVLM with dynamic resolution support
on text-rich benchmarks in Tab. 10.

C.2. CVBench and MathVista Results
Results in Tab. 11 show that, in comparison to Cambrian-
1 [73], FastVLM is significantly better on MathVista [56]
and competitive on CVBench [73], even though we have
a single backbone and significantly fewer tokens. Results

on both CVBench and MathVista benchmarks further im-
prove as we scale the SFT dataset by including LLaVA-
OneVision [41].

D. Datasets

D.1. Pretraining Datasets

For Stage-1 training, we only use LLaVA-1.5 558K [49]
dataset. For Stage-1.5 training, we use densely captioned
versions of CC3M [66] and CC12M [10] introduced in [39].
The total size of this dataset is 15 million image-text pairs.
We generated 300 generic questions, such as “What is in
this photo?”. For each (image, dense-caption) pair, we ran-
domly selected a generic question to form a triplet of (ques-



Row Method Vision LLM Data (M) Input #Visual Vis. Enc. TTFT ChartQA OCRBench TextVQA DocVQA InfoVQAAnn. Encoder (PT+IT) Res. Tokens Size(M)↑ (ms)↑
0.5B Model Comparison

R1 LLaVAOV [41]→ ViT-SO400M Qw.2 4.5+3.2 1152 7290 430 14124 61.4 - - 70.0 46.3
R2 FastVLM (Ours) FastViTHD Qw.2 15+12.5 1024 256 125 166 63.4 54.9 62.9 70.4 35.8
R3 FastVLM (Ours)→ FastViTHD Qw.2 15+12.5 2048 1280 125 918 68.8 59.0 65.4 82.1 49.3

1-2B Model Comparison

R4 MM1 [61]→ ViT-H - 3000+1.5 1344 720 632 - 61.8 56.6 68.2 68.4 38.5
R5 FastVLM (Ours) FastViTHD Qw.2 15+12.5 1024 256 125 233 69.6 62.9 69.0 75.6 41.7
R6 FastVLM (Ours)→ FastViTHD Qw.2 15+12.5 2048 1280 125 1263 76.4 63.2 71.5 87.6 60.0

7B Model Comparison

R7 MM1 [61]→ ViT-H - 3000+1.5 1344 720 632 - 72.6 62.6 72.8 76.8 45.5
R8 LLaVA-NeXT†→ ViT-L/14 L-3 - 672 2880 304 20347 69.5 49.0 64.6 72.6 -

R9 Cambrian-1 [73]

ViT-L/14

L-3 2.5+7

336

576

304

5085 73.3 62.4 71.7 77.8 -ViT-SO400M 384 430
ConvNeXt-XXL 1024 846

DINOv2-ViT-L/14 518 304

R4 FastVLM (Ours) FastViTHD Vic. 0.5+0.6 768 144 125 387 17.1 30.0 62.9 32.9 28.7
R5 FastVLM (Ours) FastViTHD Vic. 0.5+1.1 768 144 125 387 59.1 38.4 67.5 57.3 29.7
R6 FastVLM (Ours) FastViTHD Vic. 15+1.1 768 144 125 387 65.4 45.3 69.4 65.5 32.0
R7 FastVLM (Ours) FastViTHD Qw.2 15+1.1 768 144 125 446 69.3 45.9 69.5 66.9 34.3
R8 FastVLM (Ours) FastViTHD Qw.2 15+11.9 768 144 125 446 74.2 59.0 72.8 72.0 44.3

R9 FastVLM (Ours) FastViTHD Vic. 0.5+0.6 1024 256 125 577 19.2 29.3 64.4 35.6 28.9
R10 FastVLM (Ours) FastViTHD Vic. 0.5+1.1 1024 256 125 577 61.0 38.3 67.4 62.8 32.0
R11 FastVLM (Ours) FastViTHD Vic. 15+1.1 1024 256 125 577 66.9 47.1 70.6 72.4 34.7
R12 FastVLM (Ours) FastViTHD Qw.2 15+1.1 1024 256 125 641 71.0 49.7 72.1 73.3 37.5
R13 FastVLM (Ours) FastViTHD Qw.2 15+6.5 1024 256 125 641 76.6 52.9 73.1 78.7 44.2
R14 FastVLM (Ours) FastViTHD Qw.2 15+11.9 1024 256 125 641 77.0 63.3 74.8 78.9 49.7
R15 FastVLM (Ours) FastViTHD Qw.2 15+12.5 1024 256 125 641 77.5 65.7 73.4 82.7 51.2
R16 FastVLM (Ours)→ FastViTHD Qw.2 15+12.5 1024 1280 125 3721 82.4 67.3 76.6 92.3 68.3

Table 10. Comparison with recent methods on text-rich benchmarks. The models are grouped based on total number of visual tokens.
“-” indicates that performance was not reported in the respective paper. For the dataset column, “-” indicates that the dataset size for
pretraining (“PT”) or instruction tuning (“IT”) is not explicitly mentioned in the respective paper. For methods that have more than 2 stages
of training, we report the total samples used for all the pretraining stages as part of “PT”. “TTFT” means time to first token (the sum of the
vision encoder latency and the LLM prefilling time), we report latency only for models that are publicly available and in a format favorable
to MLX [27] “Vic.” refers to Vicuna [91], “Qw.2” refers to Qwen2 [80]. “L-3” refers to LLaMA-3. * - For input resolution and visual
tokens, we report the highest supported resolution by the respective models that use dynamic input resolution. †- performance numbers
reported from [73]. For VLMs that use multiple vision encoders, the size of each encoder is listed independently, for TTFT, the latency
from each encoder is summed up.

Method LLM Data (M) Input #Visual Latency CVBench CVBench Math
Decoder (PT+IT) Res. Tokens Enc.(ms) 2D 3D Vista

Cambrian-1 LLama3-8B 2.5+7 Mult. 576 3861.4 72.3 72.0 49.0
FastVLM Qwen2-7B 15+6.5 1024 256 116.3 71.8 69.6 57.6

FastVLM Qwen2-7B 15+11.9 768 144 54.8 75.9 79.3 64.6
FastVLM Qwen2-7B 15+11.9 1024 256 116.3 76.7 80.9 64.8

Table 11. Evaluation on CVBench and MathVista. “6.5M”
instruction tuning dataset is from Cambrian-1. “11.9” instruc-
tion tuning dataset is concatenation of Cambrian-1 and LLaVA-
OneVision datasets.

tion, image, dense-caption). With a 0.5 probability, we
placed the image’s special token <image> either before
or after the question. From recent works like [39, 61, 73]
and our results in Tab. 6, scaling dataset in Scale-1.5 is ben-
eficial to improve the performance of VLM across a wide
range of evaluations. Even though FastViTHD is smaller
than ViT-L/14 and ViT-H used in [39, 61] respectively, we
see similar scaling trends.

D.2. Visual Instruction Tuning Datasets

We use 3 different version of instruction tuning datasets.
The smallest scale is LLaVA-1.5 665K dataset [49].
We further scale up this dataset by including train-
ing splits of the following datasets; AI2D [33], Sci-
enceQA [55], ChartQA [58], COCO [47], DocVQA [60],
DVQA [31], GeoQA+ [8], OCRVQA [62], SegmentAny-
thing [35], SynthDoG-EN [34], TextVQA [69] and Vi-
sual Genome [36]. The conversational data for the listed
datasets is sourced from [14]. The total number of sam-
ples in this dataset is 1.1 million and is referred to as
“1.1M” in all the tables. We further scale-up instruction
tuning dataset using image-based conversational data from
Cambrian-7M [73], which amounts to 5.4 million sam-
ples. Filtered Cambrian-7M [73] is merged with “1.1M
” dataset to obtain “6.5M” instruction tuning dataset. We
then append all available single-image instruction tuning



GQA SQA TextVQA POPE LLaVA MMVet VQAv2 DocVQA Seed
BenchW BenchI

62.69 64.25 60.71 85.8 59.4 29.6 77.27 27.57 53.31
62.68 64.95 60.61 86.1 60.1 31.6 77.39 28.37 53.55
62.69 65.64 60.68 85.3 61.4 31.1 77.31 28.26 53.46

Std. 0.0047 0.57 0.041 0.33 0.83 0.85 0.049 0.35 0.099

Table 12. VLM benchmarks across three independent runs with
frozen FastViT image encoder. Training setup is LLaVA-1.5 with
Vicuna 7B as LLM. Standard deviation across runs is listed in the
bottom row.

data open-sourced by LLaVA-OneVision [41] to “6.5M” to
obtain “11.9M” instruction tuning dataset. We then include
roughly 0.6M samples from DocMatix [37] dataset to obtain
“12.5M” instruction tuning dataset. From Tab. 6, we see
further improvements in VLM benchmarks when instruc-
tion tuning dataset is scaled, following trends exhibited by
image encoders much bigger than FastViTHD.

D.3. Evaluations
In addition to evaluations listed in Sec. 4, we report perfor-
mance of FastVLM on ChartQA [58], OCRBench [52] and
InfoVQA [59] to compare FastVLM against recent methods
on text-rich benchmarks. In Tab. 12, report performance of
FastViT model (with architectural interventions) from mul-
tiple training runs and compute the standard deviation of
metrics reported in Tab. 6. As described in Sec. 4, for ab-
lations we are interested in benchmarks that are quick to
evaluate and exhibit lower variance to different initializa-
tions. From Tab. 12, GQA, TextVQA, POPE, DocVQA
and SeedBench fit the criteria. While VQAv2 also exhibits
lower variance it is substantially larger and takes long time
to evaluate. The standard deviation across the selected met-
rics is below 0.5, so we use the average of these metrics as
a reliable indicator for our analysis in Sec. 3.

E. Qualitative Analysis
We analyzed failures across benchmarks and found: In text-
rich benchmarks (e.g., DocVQA, ChartQA), failures oc-
cur when text is too small or precise alignment is needed
(e.g., reading tables). In majority of cases where the text is
too small, simply using higher input resolution can reduce
errors as shown in Tab. 14. Some cases require broader
general knowledge to obtain a correct response as seen in
Tab. 13, in such cases using a bigger LLM reduces failures.
Some cases require reasoning about a higher resolution im-
age, in which case using a bigger LLM can decrease failures
as seen in Tab. 15. Some failures result from misjudgment,
where correct responses are misclassified by the LLM judge
or incorrect labels, we ignore these cases in our analysis.

When to Use a Larger LLM

Dataset: MMMU [87]

User What is the common term for the yel-
low area surrounding the site of an in-
fection? Options: [”I don’t know and I
don’t want to guess”, ’Corona’, ’Border’,
’Halo’, ’Toxin zone’]

Ground Truth D

FastVLM-0.5B
@ 256

E ✁

FastVLM-0.5B
@ 1024

E ✁

FastVLM-1.5B
@ 256

D ✂

FastVLM-1.5B
@ 1024

D ✂

Dataset: MMMU [87]

User The sinoatrial (SA) node is indicated by
. Options: [’A’, ’B’, ’C’, ’D’, ’E’]

Ground Truth A

FastVLM-0.5B
@ 256

E ✁

FastVLM-0.5B
@ 1024

D ✁

FastVLM-1.5B
@ 256

A ✂

FastVLM-1.5B
@ 1024

A ✂

Table 13. Cases that require broader general knowledge, in which
case a larger LLM is preferred.



When to Use Higher Resolution

Dataset: GQA [30]

User What is sitting inside the bowls?
Ground Truth squash

FastVLM-0.5B
@ 256

Sculpture ✁

FastVLM-0.5B
@ 1024

Squash ✂

FastVLM-1.5B
@ 256

Potato ✁

FastVLM-1.5B
@ 1024

Squash ✂

Dataset: ChartQA [58]

User What was the highest expenditure on for-
eign military aid in 2009/10?

Ground Truth 3781

FastVLM-0.5B
@ 256

Germany ✁

FastVLM-0.5B
@ 1024

3781 ✂

FastVLM-1.5B
@ 256

275 ✁

FastVLM-1.5B
@ 1024

3781 ✂

Table 14. Cases where increasing the resolution is sufficient to
obtain a better response.

When to Use Higher Resolution and a Larger LLM

Dataset: ChartQA [58]

User What was the value of the commercial
property market in 2016?

Ground Truth 883

FastVLM-0.5B
@ 256

10000 ✁

FastVLM-0.5B
@ 1024

871 ✁

FastVLM-1.5B
@ 256

1100 ✁

FastVLM-1.5B
@ 1024

883 ✂

Dataset: DocVQA [60]

User Under which department ‘Stockroom’ is
organized?

Ground Truth Research Service Department

FastVLM-0.5B
@ 256

Department of Chemistry ✁

FastVLM-0.5B
@ 1024

Library ✁

FastVLM-1.5B
@ 256

Research Department ✁

FastVLM-1.5B
@ 1024

Research Service Department ✂

Table 15. Cases where increasing the resolution alone is not suf-
ficient to obtain a better response. Larger LLM in combination
with higher resolution is required to obtain a correct response.


	Introduction
	Related Works
	Architecture
	FastViT as VLM Image Encoder
	Multi-Scale Features

	FastViTHD: High Resolution Encoder for VLM
	Vision Encoder - Language Decoder Interplay
	Static vs. Dynamic Input Resolution
	Comparison with Token Pruning & Downsampling

	Experiments
	Comparison with state-of-the-art
	Conclusion
	Training Setup
	Architecture Details
	Naive Scaling


	Additional Results
	Dynamic Resolution (AnyRes) Results
	CVBench and MathVista Results
	Datasets
	Pretraining Datasets
	Visual Instruction Tuning Datasets
	Evaluations
	Qualitative Analysis







