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A. Additional details on STING Protocol

The STING protocol underpins the STCray dataset, cate-
gorizing clutter into four levels—Limited, Medium, Heavy,
and Extreme— progressively increasing occlusions and dis-
tractions. Concealment sublevels further diversify sce-
narios, ranging from low-density (e.g., organic items like
books) to extreme configurations such as metallic grids and
multi-layered superimposed materials. These concealments
are further diversified by systematically varying the position
and orientation of the threat, distorting threat appearances,
and challenging model detection capabilities. Fig. 1 illus-
trates this interplay, showcasing the Scissors across clutter,
concealment, and positional variations.

Caption Generation Using the STING Protocol The
caption generation process, outlined in algorithm 1, lever-
ages prior knowledge of threat-specific metadata and syn-
onym sets to dynamically construct captions for each X-ray
image I € D, collected using the STING Protocol. Syn-
onym pools S = {S;, Sy, St, S.} provide linguistic vari-
ations for X-ray descriptors (.S,), positioning phrases (.S;),
threat descriptions (S), and concealment details (S.). For
each image I, attributes such as threat type T'(I), conceal-
ment level L.(I), location L;(I), and orientation ®(I) are
extracted to generate diverse and descriptive captions C,
enriching the STCray dataset for vision-language tasks.

Please note that our STING protocol utilizes predeter-
mined metadata (e.g., threat type, placement, orientation)
based on input from airport security personnel. Then it gen-
erates detailed captions directly from the metadata recorded
during baggage preparation and scanning, eliminating hu-
man error. To validate the annotations, two independent
annotators review a subset using the metadata and X-ray
scans. We obtained a ROUGE-L value of 0.7 for captions,
validating the annotations.

Algorithm 1: Caption Generation using STING.
Input: Threat items 7', Concealment levels L.,
Locations L;, Synonym sets S5, X-ray scans D,
Output: Generated captions C,

Initialize synonym pools .S for X-ray descriptors,
verbs, positions, and concealment phrases;

Parse threat-specific metadata and mapping rules
from D,;

foreach image I € D, do
Extract:

* Threat item T'(1);

* Concealment level L.(I);

* Location L;(I) (center or corner);

* Orientation ®(I) (e.g., horizontal, tilted);
* Concealment phrase based on L.(7).
Select a random synonym for:

* X-ray descriptor from S,;

* Positioning verb from Si;

* Location phrase from S;.

Construct Caption:

Combine elements into the caption:
"{X-ray descriptor} {positioning
phrase} a {threat}, {concealment

details}, {position}.";
Append constructed caption to C';

end

return Cy;

B. Additional details on Instruction Tuning
dataset

The Visual Question-Answering (VQA) instructions were
generated using GPT-4 [4] for training STING BEE. These
conversations, derived from STCray training set captions,
focused on threat identification, complex reasoning, and
positional queries. A carefully designed GPT prompt
(Fig. 3) guided the generation process, ensuring task-
specific queries and precise responses. Fig. 5 illustrates an
example of a multi-round VQA conversation paired with its
associated baggage scan and caption.

C. Additional details on VQA Evaluation

To evaluate STING-BEE’s visual reasoning capabilities, we
developed a comprehensive VQA dataset, drawing inspira-
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Figure 1. 3D representation of STING protocol displaying the in-
terplay between clutter levels, concealment sublevels, and location
(from central to corner and flat to inclined) using Scissors (with
one sample for each sublevel for clarity).
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Figure 2. VQA Evaluation Benchmark: Distribution across
seven categories to assess model robustness across diverse visual
reasoning dimensions.

tion from the SEED Bench [1 1] methodology. It comprises
39,194 questions derived from STCray, SIXray, and PIDray.
These questions span seven distinct categories, as shown in
Fig. 2, targeting critical dimensions of visual reasoning.

¢ Instance Identity: Tests the model’s ability to recognize
and classify specific threat types (e.g., gun vs. knife), re-
quiring image-wide context.

¢ Instance Counting: Evaluates the model’s capacity to
count potential threats in a scene, crucial for understand-
ing scenario complexity.

* Instance Location: Assesses spatial understanding by

Table 1. Question categories and sample questions: Overview
of the seven question categories used in the Visual Question
Answering (VQA) dataset, comprising 39,194 questions across
STCray, SIXray, and PIDray.

Eyaluat.l on Sample Question-Answer Pairs
Dimensions
1. Instance . . s .
g ?
Identity ‘What type of threat item is present in this X-ray image?
A. Pliers B. Injection C. Lighter D. Battery
2. Instance . L
- ?
Location Where is the Battery located in this baggage X-ray scan?
A. Corner B. Middle C. Not Present
3. Instance How is the Battery concealed in this baggage X-ray
Interaction scan?
A. Fully Covered B. Half Covered C. Uncovered
4. Instance In what orientation is the Battery positioned within the
Attribute baggage X-ray scan?
A.Vertically B. Horizontally C. At an inclined angle.
5. Instance How many potential threats are present in this X-ray
Counting image?
A. One B. Two C. Three D. None
. 1 . . .
sfiscu?;lnp X How can you infer that there is a metal gun in the
§ 9
Reasoning baggage scan?

A. Since the gun is bluish or greenish, it can be easily
inferred as metal gun. B. Since the gun is
orange-coloured, it can be easily inferred as metal gun.
C. None of the above.

7. Misleading ~ Where is the Cutter located in the baggage scan?
A. There is no cutter in the image. B. Toward the corner
of the image. C. In the middle of the image.

determining object locations (e.g., center vs. corner).

* Instance Attribute: Focuses on identifying object-
specific features like orientation or occlusion.

* Instance Interaction: Requires object-level reasoning
and examines how objects interact, such as occlusion.

e Complex Visual Reasoning: Requires the model to in-
fer threats from contextual cues, emphasizing domain-
specific higher-order reasoning.

* Misleading Questions: Includes deliberately misleading
queries to evaluate model precision.

Sample questions from each category are presented in Ta-
ble 1.

D. Additional details on Referring threat local-
ization and Visual Grounding

STING-BEE’s performance in visual grounding and re-
ferring threat localization was evaluated using SIXray
and PIDray datasets. In SIXray, which includes five
threat categories, we grouped threats into two ma-
terial groups:  Metallic (Gun, pliers, wrench) and
Sharp (Knife, Scissors) to enable a more granular eval-
uation of model performance across different mate-
rial types. While PIDray’s categories were organized
into five groups: Metallic, Sharp, Flammable, Cor-
rosive, and Explosive. Evaluation questions followed



Prompt for VQA Instruction Generation:

You are an Al assistant analyzing X-ray baggage scans to detect prohibited items and security threats. Based on
a description of the scan, answer questions as if you are visually analyzing the image. The description includes
objects present in the scan, potential threat items, and objects placed to conceal them. Metallic items, such as guns,
knives, and pliers, appear blue; organic items, such as 3D-printed guns and improvised explosives, appear orange; and
inorganic items, such as circuits, powerbank, and battery, appear green. Using the description of the scan, design a
conversation between you and a person asking about this scan, focusing on identifying threat items concealed within
normal items.

The following are the threat categories likely to be present in the image alongside normal items: explosive, gun,
3D-printed gun, knife, bullet, syringe, battery, wrench, other sharp items, powerbank, scissors, hammer, pliers, and
screwdriver. If none of the threat items are present, and only normal items are detected, the image is classified
as "Nonthreat.” Note that explosives can be intact or dispersed (dismantled). If dispersed, the description will
mention the positions or concealment of the three main parts of the explosive: the container with explosive material,
the circuit, and the battery. Sometimes the circuit, container, or battery may be expertly concealed within normal items.

Additionally, note that 3D-printed guns are difficult to detect because of their faint outlines, polymer-based structure,
and orange appearance in the scan. You can include misleading questions about threat items that are not present
and answer confidently that they are not present. Furthermore, tangled wires, cables, chains, stacked metallic items,
circuits, and laptops may appear suspicious in the description. You can incorporate questions to clarify if there are any
suspicious items in the image. Provide confident and definite answers, avoiding any uncertain or speculative responses.

Figure 3. Prompt used for generating VQA instructions in STING-BEE. The prompt guides GPT-4 to generate conversations focusing on
identifying concealed threat items in X-ray baggage scans, as if you are visually analyzing the scan.
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Figure 4. Comparison of zero-shot threat localization accuracy
of STING BEE, Florence-v2, and MiniGPT-4 v2 across material
groups in localizing objects with diverse material characteristics.

templates like [grounding] Describe the baggage
and [refer] Please find <p>the threat
category</p>, with ground truth mapped to normalized
bounding boxes for consistency. As shown in Fig. 4,
STING-BEE outperformed MiniGPT-v2 [6] and Florence-
2 [17], demonstrating robust performance across diverse
material groups.

scan.

E. Additional Details on Data Augmentation

Existing approaches on data augmentation [8, 13] use
single-direction projection methods limiting realism and
orientation diversity. For the STCray dataset, our data
augmentation approach is distinguished by a novel multi-
view projection aspect enabled by our in-house CT scanner
(see Sec. F.2). Using this scanner, we generated three CT
scans of threat objects, rotating them in various orientations
and projecting them into 2D X-ray images through a care-
fully designed technique. These X-ray images simulate the
scanning of threat items from multiple perspectives. Sub-
sequently, we integrated these scans into normal baggage
scans using standard fusion and colourization techniques.
The details of the approach are provided next.

Given M (z,y, z) a 3D tensor representing a CT scan of a
threat object, we apply a rotation Ry g ., (M), where ¢, 6, ¢
refer to the Euler angles representation. Afterwards, as-
suming an ideal narrow beam geometry and ignoring scat-
ter, we approximate the projection of the threat item by
computing the integration along the nominal z-axis[10]:
P(z,y) = [ Ry,0,4(M(x,y, z))dz. The final image inten-
sity I at any point is then calculated using the exponential
attenuation model[10]:

I = [Oe—fR¢>,e,w(M($~,y»Z))dZ (1)



STCray Caption:

”X-ray scan showing a power bank aligned horizontally, in the middle of a travel bag, with the power bank covered by
the metal grid and hangers, along with some random cables for distraction, and there are other items like an umbrella
and other normal passenger items.”

Multi-Round Question-Answer Conversation:
* Human: Can you identify any potential security threats in this X-ray scan?
* Assistant: Yes, the scan contains a powerbank, which is a prohibited item.

* Human: Where is the powerbank located in the scan?
 Assistant: The powerbank is aligned horizontally in the middle of the travel bag.

* Human: What is obscuring the powerbank in the scan?
* Assistant: The powerbank is covered by a metal grid, hangers and various cables, which serve as distractions.

* Human: What color and shape should I look for to identify the powerbank?
» Assistant: You should look for a greenish rectangular block, as powerbanks appear with a greenish tinge due to
their inorganic material.

* Human: Are there any other items in the scan that could be mistaken for a threat?
» Assistant: Yes, there are other normal items such as an umbrella, hangers and random cables, which could distract
from identifying the powerbank’s presence.

* Human: How do these normal items affect the detection of the powerbank?
» Assistant: The presence of normal items like cables and an umbrella can create confusion and distract from the
identification of the powerbank.

* Human: What should be done about the powerbank in this scan?
* Assistant: The powerbank should be flagged for further inspection and potential removal from the baggage, as it is
a security threat.

Figure 5. An instance of GPT-4 generated VQA instruction featuring the baggage scan and its corresponding caption from STCray at the
top. The instruction-following data, generated using only the caption, is displayed below. Note that the baggage scan was not provided to
GPT-4 during prompting and is included here solely for readability.

where I is the initial beam intensity being exponentially
attenuated by the projection path.

such as the recent method proposed by Duan et al. [8].

In summary, our method generates 2D projections with

In the final stage, we fused a patch from a normal baggage
scan with a threat image at a given location using pixel-wise
multiplication. Both the baggage scan and the threat image
are represented in grayscale. For colorization, we utilized
a UNet architecture trained in a self-supervised manner to
convert grayscale images into pseudo-colored scans. How-
ever, more advanced colorization techniques can be used,

varying X-ray attenuation levels, introducing increased
variability in the augmented scan data. This enhanced diver-
sity effectively simulates real-world smuggling scenarios
where threat items are positioned in unconventional ways
within baggage to improve concealment. Furthermore, our
approach enables automated annotation by implicitly gen-
erating threat masks within the augmented data.



Figure 6. Illustration of train-test diversity and intra-category variability in the STCray dataset. The top row shows examples from the
Wrench category: (a) Pliers Wrench and Crescent Wrench from the train set, and (b) Pipe Wrench and Self-adjusting Wrench from the test
set. The bottom row highlights the Hammer category: (a) Brick Hammer and Claw Hammer from the train set, and (b) Multi-tool Hammer
and Framing Hammer from the test set. A clear separation between train and test sets underscores the high intra-category variance,

simulating real-world diversity, and challenging model generalization.

Figure 7. Illustration of diverse occlusion strategies in the STCray dataset across the train and test subsets. The training set (top row)
employs techniques such as occluding the Plier with metallic grids (left) and disguising it with spoons (right). The testing set (bottom row)
introduces novel strategies, including obscuring the Plier with a box of Integrated Chips (ICs) (left) and disguising it as an ornament using

a chain (right).

Due to the limited size of our CT scanner’s imaging cham-
ber (as detailed in the equipment section Sec. F.2), we ini-
tially produced augmented scan data for the six threat items
reported in Fig. 11 .

F. STCray Dataset Characteristics

The Strategic Threat Concealment X-ray (STCray) dataset

introduces unique challenges that set it apart from existing

X-ray security benchmarks, establishing itself as a pivotal

resource for advancing research in baggage threat detection.

Below, we provide a comprehensive overview of the char-

acteristics and challenges that STCray brings to the research

community.

* Emerging Sophisticated Threats:STCray addresses
modern security challenges by incorporating a diverse
range of contemporary threats, including 3D-printed
firearms and improvised explosive devices (IEDs), along-
side other prohibited items. Specifically, the dataset fea-
tures three distinct 3D-printed gun designs: the single-
shot Liberator [2], the minimalist and recent Harlot [1],
and the pepper-box styled Maverick [3]. These designs
were chosen to represent diverse shapes and structures,

reflecting the variety encountered in real-world scenar-
ios. Detecting 3D-printed firearms is particularly chal-
lenging due to their faint outlines and unconventional ma-
terial properties, which blend with benign objects in X-
ray scans (see Fig. 9).

Similarly, IEDs pose unique detection challenges due to
their non-standard shapes and multi-component config-
urations. As depicted in Fig. 10, STCray incorporates
both cohesive (compact) and dispersed IED types: co-
hesive designs consolidate explosive charges, detonators,
and power sources into a single, unified threat, while
dispersed designs distribute these components through-
out the baggage, interconnecting them with wires. These
variations further complicate detection, mirroring the di-
verse tactics employed in real-world scenarios.

Strategic Threat Concealment: STCray is meticulously
designed to reflect the complexities encountered in real-
world baggage screening scenarios, using a carefully de-
signed STING protocol , incorporating systematic threat
concealment strategies that mimic smuggling tactics and
concealment practices. Our collaborators from baggage
screening units at the airport shared these smuggling prac-



Figure 8. The ANER K8065 X-ray Baggage Scanner used for the STCray dataset collection. On the right: the MARS Microlab 5X120 CT

scanner which was employed for data augmentation Appendix E.

Figure 9. Left: Maverick 3D-printed firearm. Center: A sam-
ple baggage setup, concealing the firearm among everyday items.
Right: The corresponding X-ray scan, illustrating the challenge of
detecting faint outlines and identifying the firearm in a cluttered,
realistic baggage scenario.

Figure 10. Samples from the Explosive category: baggage prepa-
ration and the corresponding X-ray scan. (a) Cohesive (compact)
IED with components grouped together, and (b) IED with compo-
nents distributed across the baggage and connected by wires.

tices with us. Threat items are deliberately positioned and
occluded by clutter and dense objects, with varying lev-
els of overlap, material density, and angular placement.
This systematic approach ensures that the dataset captures
realistic concealment scenarios, pushing models to their
limits. Fig. 12 reports examples of different concealment
levels for three different threat items.

* Diversity and Realism: Unlike traditional datasets that
often retain similar configurations across train and test
sets—varying primarily in occlusion levels but preserv-
ing the same benign objects and threat items—STCray
was designed to reflect the complexity and variability of
real-world baggage scenarios. This diversity ensures real-
istic and challenging evaluation scenarios, mimicking the
complexity and variability of real-world baggage screen-
ing (see Sec. F.1).

F.1. Intra-Category Variance

The train and test subsets of the STCray dataset both adhere
to the STING protocol, ensuring systematic threat conceal-
ment and realistic variations. However, to introduce real-

world relevance and challenge model generalizability, we
have ensured intra-category diversity and diverse conceal-
ment strategies across the train and test subsets. For ex-
ample, as shown in Fig. 6, the train set (top row) includes
baggage scans featuring Wrench instances such as the Pli-
ers Wrench and Crescent Wrench (left), while the test set
contains entirely different Wrench types, such as the Pipe
Wrench and Self-adjusting Wrench (right). Similarly, in the
Hammer category (bottom row), the train set includes the
Brick Hammer and Claw Hammer (left), while the test set
introduces novel instances like the Multi-tool Hammer and
Framing Hammer (right).

This diversity extends to the occlusion strategies em-
ployed across subsets. For instance, as shown in Fig. 7,
the training set (top row) uses tactics such as metallic grids
to occlude the Plier or spoons to disguise it. In contrast, the
testing set ( bottom row) introduces entirely new strategies,
including obscuring the Plier with a box of Integrated Chips
(ICs) or disguising it as an ornament using a chain.

These variations in both object structure and occlusion
highlight STCray’s emphasis on high intra-category vari-
ance and its ability to challenge models beyond the limi-
tations of conventional datasets, where train and test splits
often lack such diversity. By integrating these realistic com-
plexities, STCray not only mimics real-world scenarios but
also serves as a robust benchmark for evaluating model gen-
eralization and resilience to real-world variability, thereby
addressing a critical gap in existing X-ray security datasets.

F.2. Scanner Details

The STCray dataset is collected using an ANER K8065 X-
ray scanner Fig. 8. It is an advanced X-ray baggage scan-
ner designed for security applications in airports, metro sta-
tions, and other security checkpoints. It features a tunnel
size of 800 mm in width and 650 mm in height, accommo-
dating a wide range of luggage sizes. The conveyor operates
at an adjustable speed of 0.22 meters per second and can
handle a maximum load of 200 kilograms. It is equipped
with a high-resolution 17-inch LCD display and utilizes a
dual-energy L-type photoelectric diode array detector with
12-bit depth, providing precise and detailed images. The
scanner is equipped with software providing image process-



Figure 11. 2D X-ray projections, at different angles, from CT scans of threat items (explosives, guns, knives, pliers, wrenches, and
scissors) and their augmented images. Notice the variation in the grayscale across the different projections reflecting different levels of X-
ray attenuation. Note also that the atypical poses of threats generated through these projections create challenging instances, making threat
detection more difficult. For example, the fourth and last instances of the wrench (3rd column) and the scissors (last column), respectively.

ing capabilities like edge enhancement, super image en-
hancement, high and low penetration display modes, and
a magnifier function for partial enlargement. The machine
boasts up to 40 mm steel penetration capability, effectively
capturing concealed items within dense materials.

For the data augmentation, we used our in-house CT scan-
ner model MARS Microlab 5X120 (Fig. 8), which offers
a spatial resolution range of [50-200 ¢ mm]. Its chamber
can accommodate objects with a maximum diameter of 100

mm and a length of 350 mm. Consequently, we were able
to scan only a subset of the available threat items, including
an explosive, a gun, a knife, pliers, a wrench, and scissors.

G. STING BEE: Additional Results
G.1. VQA Capabilities

To assess reasoning capabilities, we grouped the VQA cate-
gories by reasoning levels—Image-Wide Context (Instance
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The threat item is visible in the baggage and
covered with organic low density materials

The threat item is still visible in the baggage
after additional medium density materials along
with organic low density materials

Heavy density metallic items are added to
increase the complexity of the concealment
keeping the threat partially visible

The threat item is occluded by medium-density
material and high frequency of non-threat item,
such as cables

The threat item is strategically concealed using
a variety of metallic grids to deceive the model

The threat item is occluded by medium-density
material and high frequency of non-threat item,
such as hanger or umberalla

To obscure the shape of the threat, a spoon is
strategically positioned to cover its distinct
shape-specific feature

High-density screw-like objects are strategically
positioned to distort the shape of the threat,
hindering its identification

High density materials are superimprosed over
high density threat items for concealment

The threat is superimposed over multiple high-
density materials to achieve superior
concealment

Figure 12. Illustrative examples of the 10 concealment levels utilized in the STCray dataset, demonstrating increasing complexity in
obscuring threat items (scissors, gun, wrench) through diverse materials and strategies. The accompanying descriptions explain the con-

cealment techniques and their effectiveness in reducing threat visibility.

Identity, Instance Counting, Instance Location), Object-
Level Reasoning (Instance Attribute, Instance Interaction),
and High-Level Domain Awareness (Complex Visual Rea-
soning)—and plotted model accuracy across these groups
(see Fig. 13). Further analysis of the plot shows that

STING BEE outperforms other models in both Image-Wide
(65.64%) and domain-level (79.17%) tasks, demonstrating
its comprehensive image-wide and domain-specific knowl-
edge due to domain-targeted instruction tuning across mul-
tiple tasks.
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Figure 13. Model Accuracy Across Different Reasoning Cate-
gories in Visual Question Answering for X-ray Threat Detection.

Table 2. Cross-Domain comparison of different models on multi-
class classification tasks. Models are trained on the STCray train-
ing set and tested on a combined SIXray and PIDray dataset, show-
ing overall mAP and F1-score.

Model mAP F1 Score
EfficientNet-B4 [15] 9.5 9.0
GWEFS [9] 53 6.6
DSACDIC [18] 3.7 6.7
ViT [7] 8.4 12.1
DeiT [16] 9.1 8.9
DINO [5] 114 8.3
CLIP [14] 8.1 33
LongCLIP [12] 9.5 4.7
STING BEE (Ours) 30.1 36.2

G.2. Cross-Domain Generalization

The results in Table 2 demonstrate the generalization ability
of our proposed model, STING BEE, in multi-class classi-
fication tasks. To ensure a fair evaluation, all state-of-the-
art and baseline models were trained on the STCray dataset
and tested on a combined SIXray and PIDray dataset, with
unique categories such as Baton and Sprayer removed to
align the evaluation settings. Despite the competitive re-
sults from GWFS and DSACDIC, which are designed for
cross-domain scenarios, on specific classes, STING BEE
achieved the highest overall mAP of 30.1 and F1 score of
36.2, consistently outperforming all other models across
most threat items, including Gun, Wrench, Hammer, and
Powerbank. These results highlight STING BEE’s ability
to handle scanner-induced variability and intra-class dif-
ferences, establishing it as a robust benchmark for cross-
domain generalization in threat detection.

G.3. Comparison with General-purpose VLMs

Since STING-BEE is the first X-ray security visual Al as-
sistant capable of scene comprehension, visual grounding,
and VQA, we compared it with other general-purpose (open
and closed-source) VLMs. The results in Table 3 show that

Table 3. Our STING-BEE outperforms Llama 3.2, Qwen2-VL, LLaVa (Finetuned)
and GPT-4o. IL:Instance Location, CR:Complex Reasoning, IID:Instance Identity,
IC:Instance Counting, M:Misleading, IA:Instance Attribute, IT:Instance Interaction.

. Model Scene Comprehension Visual Question Answering (VQA) Grounding

Fl mAP IL CR IID IC M TA 1II Overall acc@0.5 acc@0.25
GPT-40 19.4 18.1 21.516.2 36.3 29.6 25.2 19.02 18.3 31.3
LLaVa 1.5 (Finetuned) 28.3 222 35259.4 77.8 36.1 15.9 48.2 253 45.1 - -
Llama 3.2 13.4 17.3 26.529.3 36.3 20.8 11.6 254 133 235 1.9 53
Qwen2-VL 18.6 16.9 31.3 15.1 41.3 24.1 18.8 36.1 13.1 278 1.2 39
STINGBEE. 22.1 182 253 41.3 69.2 354 20.5 422 276 41.8 53 14.1
(limited captions)
STING-BEE 34.7 298 49.2 79.2 80.0 45.2 27.8 52.8 35.0 52.8 8.7 215

STING-BEE outperforms GPT-40 on both VQA and cross-
domain scene comprehension tasks. STING-BEE also sur-
passes Qwen2-VL and Llama 3.2 in scene comprehension,
VQA, and grounding capabilities, highlighting the need
for domain-aware VLMs in X-ray security screening. To
further analyze the relevance of the detailed captions in
STCray, we trained STING-BEE with only image labels
and box-level annotations. As shown in Table 3, STING-
BEE with limited annotations still performs better than gen-
eral purpose models; however, performs lower compared to
STING-BEE trained with detailed annotations (Table 3).

G.4. Qualitative Results

Qualitative examples shown in Fig. 14 highlight STING-
BEE’s ability to excel across the key vision-language tasks,
including scene comprehension, referring threat localiza-
tion, visual grounding, and VQA, especially across diverse
datasets, including STCray, SIXray, PIDray, and Compass
XP, emphasizing its cross-domain generalization despite
scanner variations. These results also highlight STING-
BEE’s robustness in handling high intra-categorical vari-
ability within threat categories, effectively addressing chal-
lenges like occlusion and object concealment in complex
X-ray imagery.

To further illustrate these capabilities, Fig. 15 showcases
STING-BEE’s performance in scene comprehension, high-
lighting its ability to classify threat and non-threat items
in complex baggage scans. Fig. 16 presents examples of
visual grounding, demonstrating precise identification and
localization of specific threat objects in the X-ray scans.
Fig. 17 provides qualitative results for referring threat lo-
calization, emphasizing the model’s ability to locate ob-
jects based on textual references. Finally, Fig. 18 show-
cases STING-BEE’s effectiveness in handling diverse Vi-
sual Question Answering (VQA) tasks.
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Figure 14. Qualitative examples showcasing the capabilities of STING-BEE across four vision-language tasks: Scene Comprehension (d,
e, f, 1), Referring Threat Localization (a, j), Visual Grounding (c, g), and Visual Question Answering (b, h). These examples span four
X-ray security datasets— STCray, SIXray, PIDray, and Compass XP — illustrating STING-BEE’s robustness and adaptability to diverse
X-ray imagery.
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Figure 15. Scene comprehension qualitative examples showcasing the ability of STING-BEE to classify X-ray baggage scans into one or
more threat-related classes. The images display diverse objects such as guns, pliers, wrenches, power banks, scissors, and hammers across
different scenarios, highlighting the robustness of STING-BEE in understanding and categorizing threat items within X-ray imagery.
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Figure 16. Visual grounding qualitative examples demonstrating STING-BEE’s ability to describe and localize specific threat items in
X-ray baggage scans. The system effectively identifies and highlights objects such as guns, handcuffs, and bullets within diverse scenarios.
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Figure 17. Referral threat localization examples showcasing STING-BEE’s precision in identifying and localizing specific threat items in
X-ray baggage scans. The system demonstrates its capability to locate different contraband objects, utilizing bounding box coordinates to

highlight their positions within the scans.
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Figure 18. Qualitative examples showcasing the capabilities of STING-BEE in Visual Question Answering (VQA) across diverse question
types: (a) Instance Identification, Instance Counting, and Misleading Question resolution, (b) Instance Location and Instance Attribute
recognition, and (c) Instance Interaction and Complex Visual Reasoning.
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