
Saliuitl: Ensemble Salience Guided Recovery
of Adversarial Patches against CNNs

Supplementary Material

Saliuitl: further details
Pseudocode
In Section 3, we describe Saliuitl in detail. We now present
the pseudocode for Saliuitl in Algorithm 1. Note that the al-
gorithm involves the subroutines GetAttributes, Aggregate,
PreprocessMask, Inpaint, UpdateCondition, Update, and
StopCondition. GetAttributes refers to the attribute extrac-
tion process applied for each binary feature map during the
detection stage, hence it takes as input a binary feature map
and returns its nf attributes. The Aggregate subroutine ag-
gregates the ensemble feature set S into the ensemble fea-
ture vector s ∈ Rnf×|BD|. This process involves not only
organizing the input such that each attribute across the en-
semble represents one of the nf channels of s, but also nor-
malizing each dimension of s before it is fed into AD. In
particular, each 1×|BD| vector corresponding to an ensem-
ble attribute is normalized between -1 and 1.

During the recovery stage, we use the current iteration
threshold βr to compute the binary feature map Br. In
the PreprocessMask subroutine we compute a binary pixel
mask Mask∈ {0, 1}W×H using Br. This may involve, for
example, potentially ignoring neurons in Br that are iso-
lated outliers, and ultimately determining which input space
regions (pixels) correspond to the neurons of interest in Br.
Note that the receptive fields of the neurons in the feature
map mi (and therefore those in Br) depend on the layers
that are applied to the input xi to produce mi, hence they
depend on the shallow layers of the victim model h. The
Inpaint subroutine takes as input an image xi ∈ RW×H×C

and a binary pixel mask Mask∈ {0, 1}W×H , where W , H ,
and C are width, height, and channels of the input image.
The pixels corresponding to ones in the binary pixel mask
are inpainted (e.g., using black pixels, biharmonic inpaint-
ing, etc.), and those corresponding to zeros retain their orig-
inal values, the result is the inpainted image x̂i.

The UpdateCondition, Update, and StopCondition sub-
routines depend on the task of the victim model h. In the
UpdateCondition we compare ŷi to h(x̂i), to determine
whether ŷi should be updated; recall this condition corre-
sponds to detecting new objects in object detection (i.e.,
objects with an IoU below 0.5 for all detected objects in
ŷi) and to a label change in image classification. For im-
age classification, Update merely sets ŷi to h(x̂i); in ob-
ject detection UpdateCondtion and Update are performed
implicitly and simultaneously on every iteration, by apply-
ing non-maximum suppression on objects labeled with the

same class in ŷi ∪ h(x̂i), using an IoU threshold of 0.4
(see our code implementation for further details). Finally,
in StopCondition, we determine if the inpainted region is
too large and in the case of image classification we also de-
termine whether the output of the victim model changed; we
terminate Saliuitl if any of these conditions are met. Note
that for the sake of readability we place StopCondition at
the end of the loop in Algorithm 1 and Figure 2, but in prac-
tice we can check for the first stopping condition after the
mask preprocessing step, before performing inpainting.

Algorithm 1 Saliuitl

Require: input xi ∈ RW×H×C , model h, attack detector AD,
attack detection threshold α∗ ∈ [0, 1], sets of saliency thresh-
olds BD ∈ R|BD| and BR ∈ R|BR|

mi ← h(xi) ▷mi ∈ Rmx×my is a feature map.
S := {} ▷ Empty sequence to be filled (ensemble attributes)
for βb ∈ BD do

Bb := mi ≥ βb ▷ Binary feature map Bb ∈ {0, 1}mx×my .
S ← S ∪ GetAttributes(Bb)

end for
s← Aggregate(S)▷ Attribute ensemble vector s ∈ Rnf×|BD|.
if AD(s) < α∗ then ▷ Attack detection score

return h(xi)
else ▷ Attack detected→ enter recovery stage

ŷi ← h(xi)
for βr ∈ BR do

Br := mi ≥ βr ▷ Br ∈ {0, 1}mx×my .
Mask← PreprocessMask(Br) ▷ Mask∈ {0, 1}W×H .
x̂i ← Inpaint(xi,Mask)
if UpdateCondition(ŷi, h(x̂i)) then

ŷi ← Update(ŷi, h(x̂i))
end if
if StopCondition(Br, ŷi, h(x̂i)) then

return ŷi

end if
end for
return ŷi

end if

Architecture and training of AD

A full description of AD is presented in Table 3. When
deploying Saliuitl in a given domain (dataset) we propose
to train AD using a balanced dataset of attacked and clean
images from said domain, akin to X0 and X ′

0 as described
in Section 4.1. The generation of such data is straightfor-
ward when clean images from the target domain are avail-
able by using (or generating) adequate patch attacks de-



Table 3. Architecture of the attack detector AD.

Layer Input Size Output Size Activation Batch norm Kernel size Input channels Output channels Pooling

1D Conv (1, nf , |BD|) (1, 12, 12) ReLU ✓ 2 4 12 Adaptive average
1D Conv (1, 12, 12) (1, 12, 12) ReLU ✓ 2 12 12 Adaptive average
Flatten (1, 12, 12) (1, 144) - - - - - -
Linear (1, 144) (1, 576) ReLU ✗ - - - -
Linear (1, 576) (1, 576) ReLU ✗ - - - -
Linear (1, 576) (1, 1) Sigmoid ✗ - - - -

pending on the victim model task; there are many publicly
available patches from the literature [11, 24, 36, 39]. Since
this is a binary classification task, we train AD using bi-
nary cross-entropy loss, labeling attacked images as 1 and
clean images as 0. Recall that the input to AD are the en-
semble attribute vectors corresponding to each image, thus
the threshold set BD for detection and the nf attributes to
be extracted per image must also be defined before train-
ing, and cannot be changed at inference time. We consider
the optimization algorithm, number of epochs, batch size,
train/validation split, and early stopping strategy to be im-
plementation choices. We state our concrete choices for
these hyper-parameters later in the Appendix when we de-
scribe in detail Saliuitl’s parameters for our evaluation.

Evaluation Setup Details
Mean Average Precision
A crucial metric in our evaluation of object detection sce-
narios is the mean average precision (mAP), which is the
area under the precision-recall curve of detected objects.
We provide further details on its computation. Objects de-
tected by the model are grouped by class, and a descend-
ing confidence score order is imposed on each group. The
precision-recall curve for each group (i.e., class) is com-
puted following the order of the group, and it indicates how
precision (accurate inferences) evolves at different levels of
recall (detected ground truth objects), and the average pre-
cision (AP) is computed as the area under the curve; av-
eraging the AP of all classes yields the mAP. In particu-
lar, we compute the mAP using the 11 point interpolation
method of the Pascal VOC 2007 challenge [13]. Recall that
we use the victim model’s clean outputs as the ground truth;
our victim model is YOLOv2 and we set its confidence and
non-maximum suppression thresholds to 0.4 throughout our
evaluation, including the computation of ground truth (i.e.,
clean) bounding boxes.

Patch Attack Models
In this section we describe the attack models employed
throughout our evaluation. For object detection, we use eva-
sion or hiding-attack patches, which are optimized to mini-
mize the objectness score of the victim model. Patches are

applied following the attack model by [36]. In short, ad-
versarial patches are applied at the center of the bounding
boxes of detected objects in the clean image. Each patch is
always scaled to occupy 20% of the attacked object’s total
bounding box area; see the top row of Figure 3 for illustra-
tions of our attacks on object detection. Note that with the
exception of the multi-object patch attack, we limit the at-
tack to a single object. To perform double patch attacks, we
create two patches occupying 10% of the original bound-
ing box area each, and place them reflected diagonally from
each other w.r.t to the center of the attacked object’s bound-
ing box; as seen in Figure 3, the pattern of both patches in
our double patch attack are identical. To perform triangular
patch attacks, we apply a single patch attack, but use 40% of
the attacked object’s bounding box instead of 20%, and then
we remove half of the patch diagonally. Multi-object patch
attacks are essentially single-patch attacks that are applied
to all objects detected by the victim model on the clean im-
age. Note that in all our evaluations, except for our adaptive
attack experiment, we do not perform patch optimization
and instead use the publicly available patch from [24]. We
choose to evaluate on this patch due to its availability and
due to recent work showing that it is more challenging to
detect than most other attacks in the literature [38]. For our
adaptive attacker experiment in Section 4.3, we optimize
single-patch attacks from scratch based on [36], using dif-
ferent stealthiness values. Moreover, note that during the
training of AD we use only single-patch attacks with the
publicly available OBJ patch from [36], so that the evalua-
tion patch attack is not seen by AD.

For image classification, we use an untargeted classifi-
cation attack, following the official implementation of [39].
Square patches with a fixed 32 × 32 pixel area are placed
randomly on an image and the binary cross entropy of the
victim model w.r.t to the ground truth label for the corre-
sponding input is maximized. Our chosen adversarial at-
tack model on image classification is displayed on the bot-
tom row of Figure 3. As opposed to our attack on detection,
this attack is input specific. To generate double patches,
we merely halve the area of the randomly placed patch,
and then place a new patch symmetrically reflected from
the original patch location; for four patches, we repeat the
process in two new locations (and of course, we halve the



Table 4. Patch attack effectiveness on all datasets.

Attack Dataset
INRIA VOC ImageNet CIFAR-10

Single 0.2292 0.2852 0.8959 0.5022
Double 0.2153 0.2601 0.9433 0.6880
Quadruple - - 0.9851 0.7918
Triangular 0.1979 0.2224 0.0890 0.0614
Multi-object 0.6215 0.5768 - -

area again). For triangular patches, we follow the same pro-
cedure we use for object detection, we take the single patch
attack, double its size, and remove half of it diagonally; note
that unlike rectangular attacks with any number of patches,
we do not perform optimization for triangular patches, and
merely reshape the square patches.

We also report the attack effectiveness of each type of
attack in Table 4. From the attacks on object detection
(INRIA and Pascal VOC), we observe that modifying the
patch attacks into double and triangular patches results in
a drop in attack effectiveness. This follows from the fact
that the patches are optimized according to the single and
multi-object patch scenarios [24, 36], and hence changing
the shape and location of the patches makes them less ef-
fective. Note that for image classification (ImageNet and
CIFAR-10), where we optimize the patches from scratch,
the attack effectiveness increases for multiple patches. This
suggests that if an adversarial patch attack is optimized to
attack more than one region, this may lead to a larger adver-
sarial impact, without increasing the total area of the attack.
The large drop in effectiveness for the triangular patches on
image classification is congruent with the results for object
detection, since triangular patches for classification are ob-
tained by reshaping single patch attacks without performing
any optimization; we conjecture the much larger drop in ef-
fectiveness for image classification compared to the drop
for object detection follows from the input dependency of
the attacks on image classification, which makes them more
susceptible to deviations from the patch region they were
optimized for.

Saliuitl (further) implementation details
We introduce Saliuitl in Section 3, and provide the detailed
pseudocode in Algorithm 1. Here we describe our concrete
implementation choices for the different components of Sal-
iuitl, upon which we base our numerical results. The de-
tailed pseudocode for our DBSCAN-based implementation
of Saliuitl is presented in Algorithm 2.
Attribute Extraction via DBSCAN. Recall that we extract
four attributes from each binarized feature map Bb in the en-
semble defined by BD during the detection stage, as in [3].
In Algorithm 2 the attributes extracted from each binary fea-

Algorithm 2 Saliuitl-DBSCAN

Require: input xi ∈ RW×H×C , model h, attack detector AD,
attack detection threshold α∗ ∈ [0, 1], sets of saliency thresh-
olds BD ∈ R|BD| and BR ∈ R|BR|

mi ← h(xi) ▷mi ∈ Rmx×my is a feature map.
S := {} ▷ Empty sequence to be filled (ensemble attributes)
C := {} ▷ Empty sequence to be filled (clusters)
for βb ∈ BD do

Bb := mi ≥ βb ▷ Binary feature map Bb ∈ {0, 1}mx×my .
Sb, Cb ← GetAttributesDBS(Bb)
S ← S ∪ Sb

C ← C ∪ Cb
end for
s← Aggregate(S) ▷ Attribute ensemble vector s ∈ R4×|BD|.
if AD(s) < α∗ then ▷ Attack detection score

return h(xi)
else ▷ Attack detected→ enter recovery stage

ŷi ← h(xi)
for βr ∈ BR do

Br := mi ≥ βr ▷ Br ∈ {0, 1}mx×my .
Mask← PreprocessMaskDBS(Br, βr, C,BD)

▷ Mask∈ {0, 1}W×H .
x̂i ← Inpaint(xi,Mask)
if UpdateCondition(ŷi, h(x̂i)) then

ŷi ← Update(ŷi, h(x̂i))
end if
if StopCondition(Br, ŷi, h(x̂i)) then

return ŷi

end if
end for
return ŷi

end if

Algorithm 3 GetAttributesDBS

Require: Bin. feature map B ∈ {0, 1}mx×my , threshold β ∈ R
nimp :=

∑
j

∑
k B(j, k) ▷ Number of important neurons

Cx ← DBSCAN(B) ▷ Important neuron clusters

nc ← |Cx| ▷ Number of clusters.
E := {}

▷ Empty sequence to be filled (set of intra-cluster distances)
for c ∈ Cx do

dic ← AvgICdistance(c)
▷ Average intra-cluster distance for c.

E ← E ∪ dic
end for
dic ← ArithmeticMean(E) ▷ Mean over E
σ(dic)← PopulationStdDev(E) ▷ Std. dev. over E
Sx ← {nimp, nc, dic, σ(dic)}
return Sx, Cx

ture map Bb are placed into the set Sb, moreover, we also
save the clusters found by DBSCAN for Bb in the set Cb, as
they might be used during the recovery stage as well.

Algorithm 3 shows how we compute the four attributes



Algorithm 4 PreprocessMaskDBS

Require: Bin. feature map B ∈ {0, 1}mx×my , threshold β ∈ R,
set of cluster sets C, set of det. thresholds BD ∈ R|BD|

Mask← 0 ▷ Initialize Mask∈ {0, 1}W×H to zero matrix
if β ∈ BD then ▷ Was Cx computed in the det. stage?
Cx ← GetClusters(C, β)

else
Cx ← DBSCAN(B)

end if
for c ∈ Cx do

Mask← UpdateMask(c,Mask)
end for
return Mask

used in our evaluation. The first feature is the number of
important neurons nimp, i.e., the number of ones in Bb.
The other three features characterize the spatial distribu-
tion of important neurons in Bb, and are obtained through
density-based clustering using DBSCAN; the advantage of
this clustering approach is that it allows arbitrarily shaped
clusters [12]. We employ sci-kit learn’s DBSCAN imple-
mentation [30]; the details of DBSCAN [12] are outside of
our scope. We thus treat the binarized feature map as a two-
dimensional mx ×my plane and use DBSCAN to identify
the set of important neuron clusters Cb. We then use as a
second attribute the number of identified clusters |Cb|. For
the last two attributes, we compute for each cluster c ∈ Cb
the average intra-cluster distance (distance between points
in c) denoted dic, and we then compute its mean dic and its
standard deviation σ(dic) over the set Cb. Note that the av-
erage intra-cluster distance dic for a given cluster c involves
computing the distance matrix for the elements in c, and
then taking the average of its lower triangular elements. To
put a limit on the computation time, if |c| > 1000, we take
a random sample of 1000 elements and use only said sam-
ple to compute the distance matrix and dic. Once the four
attributes are extracted for all members of the ensemble, we
aggregate S into the ensemble attribute vector s, normaliz-
ing across each of the four dimensions as described before.
For further details refer to our code implementation.
Mask Preprocessing via DBSCAN. During the recovery
stage, we use the threshold set BR (that may overlap with
the set BD) which is in strictly descending order. Recall that
for each threshold βr ∈ BR, we compute a binary feature
map Br from mi to localize input regions that correspond to
adversarial patches. In particular, for our DBSCAN-based
implementation we find clusters of important neurons in Br

and only consider pixel regions corresponding to neurons
that are within a cluster.

In Algorithm 4 we describe how Mask is obtained for a
given Br and its corresponding threshold βr. After initial-
izing Mask to zeros, we first check whether the clusters for
Br were already computed in the detection stage (i.e., we

check if βr ∈ BD), if they were, we need only to retrieve
the clusters from the set of cluster sets C (already computed
in the detection stage). Note that if the clusters are not avail-
able we need to compute them using DBSCAN. Then, im-
portant neurons within the clusters found by DBSCAN are
used to update Mask; in short, we map each such neuron
back to the pixels in input space that are within its receptive
field. This operation depends on the victim model h and
the particular shallow layer used to compute mi, our code
implementation shows the details on how this is done for
our choice of using the first max pooling layer in ResNet-
50 and YOLOv2. We then feed the computed mask Mask
and the original image xi to the inpainting subroutine; in
our implementation we use sci-kit image’s biharmonic in-
painting [37] (version 0.19.3), whose description is beyond
our scope. The implementation of the update and stopping
conditions, as well as the update of the recovered output ŷi

follow our description for Algorithm 1.
Training of AD. We now turn to describe in detail how we
trained AD to detect adversarial patches in the benchmark
datasets used in our evaluation. In all four datasets, we se-
lect a random split, significantly smaller than the one we
use for evaluation, to be used for training. For the object
detection datasets (INRIA and Pascal VOC) we randomly
select 20% of the training sets, resulting in a total of 123
images for INRIA, and 1003 for Pascal VOC, and for eval-
uation we use their entire test sets (288 and 4905 images,
respectively). For CIFAR-10, we employ 2.5% of the val-
idation set (250 images) as training data, and the rest of
said set (9423 images) for evaluation. Finally, for Ima-
geNet we use 2% of the validation set (2500 images) for
training, and the remaining 98% (37065 images) for eval-
uation. Note that these splits used for image classification
do not add to 100%, this is because we randomly extracted
the training data before filtering out inputs where the vic-
tim model does not achieve a correct prediction in the clean
setting. For each dataset, we generate an attacked version
of its training split using the patch attack that corresponds
to the dataset’s task, and importantly, we do so using exclu-
sively rectangular single-patch attacks, moreover note that
for object detection we use the patch by [36], distinct from
the patch used in our evaluation [24]. Afterwards, we label
the original dataset and its attacked version as clean (0) and
adversarial (1) examples, respectively, and proceed to train
AD using binary cross-entropy loss; we employ the Adam
optimizer with default parameters (betas=(0.9, 0.999) and
learning rate γ = 0.0001). We use a batch size of one,
and shuffle the dataset after each training epoch. Moreover,
we select 20% of the training data as a validation split, to
perform early stopping when the validation loss has no im-
provement after 200 epochs. AD is able to converge in only
a few epochs (typically less than 10) in all four datasets.
Regarding the specifics of weight initializations and simi-



lar hyper-parameters, we perform the entirety of our train-
ing using PyTorch 1.13.1 and we use the default parameters
for all modules [29]. Recall the extracted attributes we use
for our evaluations rely on DBSCAN clustering. To obtain
the features fed into AD during training and inference time
we employ sci-kit learn’s DBSCAN implementation[30];
we use version 1.2.2 and use the DBSCAN parameters de-
scribed in Section 4.1.

Parameters for baseline methods
In our evaluation, we varied the parameters of the baseline
methods as follows. For NutNet [25], we vary the number
of blocks between all three possible settings in the official
implementation (8, 16, and 32), we vary the coarse thresh-
old k1 in the range [0.04, 0.2] using a step size of 0.005, and
we vary the fine threshold k2 in the range [0.1, 0.3] using a
step size of 0.05. For PAD [22], we vary the threshold pa-
rameter (default value is 80 in [22]) in the range [10, 90],
using a step size of 10 (for ImageNet we use a step size
of 20 in the range [20, 80] due to the high computational
cost of running PAD on such a large dataset and we also
include results using a threshold parameter of 90, due to
its superior performance in all datasets). For Jedi [35], we
vary the threshold at the output of the autoencoder to an
eighth, a quarter, and half of its original value. For Patch
Cleanser [40] we vary the number of masks k, setting it to
half, double, and triple of its default setting k = 6. Note
that Patch Cleanser is not applicable to the object detec-
tion task. For Themis [18], we vary both neuron importance
thresholds (by default fixed at β = 0.75, θ = 0.85) in the
range [0.05, 0.95], using a step size of 0.05. Moreover, since
Themis assumes a known patch size, we introduced Themis-
50, which is a baseline representing the case where Themis
expects patches that are half the size of the true bound on the
patch size, that is, for Themis we provide the ground truth
bound on patch size, which corresponds exactly to 32× 32
pixels for image classification, and for object detection we
use the maximum patch size across each evaluation dataset
(INRIA and Pascal VOC), recall that for our attacks on ob-
ject detection the patch size depends on the size of the at-
tacked objects. For FNS [43], we vary the Gaussian decay
rate λ in the range [1, 3] using a step size of 0.4, and we vary
the clipping parameter α in the range [1, 2] using a step size
of 0.05. Finally, for Object Seeker [41] we vary the prun-
ing threshold τ (0.6 by default) and the masked confidence
threshold γm (with no specific default value), both in the
range [0.1, 0.9] using a step size of 0.1. Note that Object
Seeker is not applicable to the image classification task.

Complementary results
In the following, we present figures referenced in Sec-
tion 4.2 regarding results we did not present in full detail
due to spatial constraints.

Object Detection
Figures 5 and 6 show the detailed tradeoff between recov-
ery rate and lost predictions corresponding to object detec-
tion on INRIA and Pascal VOC, respectively. For these fig-
ures, the four columns in each row represent the four object
detection patch attack scenarios (single, double, triangular,
and multi-object patches). In the top row we show the trade-
offs achieved by each method, where each point is a specific
setting for its parameters. Note that not all settings are dis-
played in the figure; to ease visualization, we report only
points corresponding to Pareto optimal settings (i.e., those
for which not other setting has a higher recovery rate and a
lower lost prediction rate) for NutNet, Themis, Themis-50,
FNS, and Object Seeker. Moreover, we display results only
for the relevant region that allows to visualize the best set-
tings from all methods (e.g., if some settings have a lost pre-
diction rate close to 1 they would not appear in our plots).
In the middle row, we report the maximum recovery rate
that each method achieves for a fixed limit on the lost pre-
diction rate, while the bottom row shows the maximum re-
covery rate that each method achieves for a fixed limit on
the inflicted attack rate (as defined in Section 4.1). When a
method is not represented in the middle or bottom rows of
these figures it means that it is unable to achieve a non-zero
recovery rate for the largest limit on lost prediction rate or
inflicted attack rate denoted in the corresponding figures.

Figures 7 and 8 display the tradeoff between clean and
adversarial nmAP on INRIA and Pascal VOC, respectively.
Once again, the columns represent the four object detection
patch attack scenarios, each point in the figure represents
the adversarial/clean nmAP tradeoff achieved by a param-
eter configuration of a recovery method, and in the case of
NutNet, Themis, Themis-50, FNS, and Object Seeker, we
report only Pareto optimal configurations.

Image Classification
We present the tradeoff between recovery rate and lost pre-
dictions achieved by each method on ImageNet and CIFAR-
10 in Figures 9 and 10, respectively. As in Figures 5 and 6,
each column corresponds to a patch attack scenario (i.e., for
image classification, single, double, quadruple, and triangu-
lar patch attacks). As before, each point in the top row of
Figures 9 and 10 represents a parameter configuration of a
recovery method, we focus on Pareto optimal settings for
NutNet, Themis, Themis-50, and FNS, and we focus on a
region that allows to visualize only relevant configurations
from all methods. The middle and bottom rows of the fig-
ures present recovery rates at fixed limits on lost prediction
and inflicted attack rates as described for the object detec-
tion datasets.
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Figure 5. Recovery results for Object Detection (INRIA). From left to right: single, double, triangular, and multi-object patch attacks.
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Figure 6. Recovery results for Object Detection (Pascal VOC). From left to right: single, double, triangular, and multi-object patch attacks.
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Figure 7. nmAP results for INRIA. From left to right: single, double, triangular, and multi-object patch attacks.
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Figure 8. nmAP results for Pascal VOC. From left to right: single, double, triangular, and multi-object patch attacks.
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Figure 9. Recovery results for Image Classification (ImageNet). From left to right: single, double, quadruple, and triangular patch attacks.
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Figure 10. Recovery results for Image Classification (CIFAR-10). From left to right: single, double, quadruple, and triangular patch
attacks.
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Figure 11. Saliuitl’s detection accuracy vs. the detection ensemble size |BD|, for all datasets.
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(a) |BD| = 4
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(b) |BD| = 10
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(c) |BD| = 20.
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Figure 12. Saliuitl’s recovery performance on INRIA and ImageNet (top), and on Pascal VOC and CIFAR-10 (bottom) as a function of
|BR|, illustrated for different choices of |BD|.

Ablation Studies
Impact of Ensemble Size
In Section 4.2 we assess the impact of the cardinality of the
sets BD and BR, i.e., that of the ensemble size on the perfor-
mance and computational cost of Saliuitl when α∗ = 0.5.
In what follows, we conduct an in-depth analysis of the im-
pact of ensemble size on both performance and computa-
tional cost. As before, we consider four ensemble sets

BB :=

{
x ·max(mi)

|BB |

}|BB |−1

x=0

, |BB | ∈ {4, 10, 20, 50}.

As in Section 4.2, when we state that one of BD or BR

has cardinality |BB |, it means we choose that set to be BB

as described above.

Detection Accuracy and Recovery Performance
In Figure 11(a), we present results for attack detection ac-
curacy on object detection (INRIA) and image classifica-
tion (ImageNet) as a function of the ensemble size per-
tinent to attack detection |BD|. For each ensemble size
and attack scenario, the reported detection accuracy is the
best possible, i.e., instead of setting α∗ = 0.5, we tune
α∗ in each case to get the best possible accuracy; Fig-

ure 11(b) shows the corresponding results for Pascal VOC
and CIFAR-10. Our results show that increasing the ensem-
ble size can be beneficial for attack detection accuracy in
both object detection (INRIA/Pascal VOC) and image clas-
sification (ImageNet/CIFAR-10). In particular, detection
accuracy increases for all datasets when increasing |BD|
from 4 to 10. However, we also observe that increasing
ensemble size is beneficial only up to a point, as a drop
in attack detection accuracy can be observed for all object
detection scenarios, with the exception of triangular patch
attacks, when the cardinality of BD is increased from 20
to 50. Interestingly, the detection accuracy for triangular
patches on ImageNet decreases when increasing |BD| from
10 to 20, but it then reaches its highest point when increas-
ing |BD| from 20 to 50. We conjecture that for all patch
attacks, using an ensemble size that is too small leads to
patterns that are too coarse in the ensemble attribute vector
s, leading to an accuracy reduction for our detector network
AD; moreover, if the ensemble size is too large, this might
lead to overfitting and a reduction in detection accuracy, as
was observed for all non-triangular attacks on object detec-
tion.

In Figure 12 we display the recovery performance



achieved by each choice of |BR| across all datasets and
attack models, for different choices of |BD|. For a given
choice of |BD|, we determine the value of α∗ that achieves
the best detection accuracy, and we use the corresponding
detection results to determine when to perform the recov-
ery stage. Recall the evaluation metrics described in Sec-
tion 4.1; we now define recovery performance (RP) as the
fraction of clean and effectively attacked inputs (i.e., images
in X ′

1 ∪ X1) that yield a correct output upon applying Rϕ.
This can be expressed in terms of the recovery rate (RR)
and lost prediction rate (LPR) as

RP =
RR + 1− LPR

2
.

In general, our results show that for a given choice
of |BD|, increasing |BR| is beneficial for recovery per-
formance. Beyond very small detriments for recov-
ery performance for image classification scenarios (Ima-
geNet/CIFAR) when |BR| ≥ 20 and |BD| ∈ {4, 10, 20}, the
clear trend is that increasing |BR| allows Saliuitl to attain a
better recovery performance. Note that we computed these
results following our DBSCAN-based implementation for
attribute extraction and mask preprocessing. The main take-
away is that while increasing the sizes of BD and BR is a
sensible approach to improve recovery performance, larger
sets of saliency thresholds might not always be desirable,
even from a detection accuracy and recovery performance
perspective with no regard for computational efficiency.

Computational Cost.
Next, we evaluate how the computational cost of our de-
fense scales with the shape and number of patches, and
with the cardinality of the saliency threshold sets BD and
BR. In Figure 13 we report the computational cost for
different components of Saliuitl in all patch scenarios and
all datasets, where each row in the figure corresponds to a
dataset. All plots show median values across each dataset
with error bars indicating the first and third quartiles. For
any type of patch attack, we report statistics on all attacked
inputs (i.e., images in X ′

0, as described in Section 4.1), and
we report clean input statistics over all clean inputs (i.e., all
images in X0).

For the attack detection stage, we show statistics for the
time it takes to construct the clustering-based attribute en-
semble vector s we use in our evaluation and the time it
takes to compute the detection score for an input using AD
in Figures 13(a) and 13(b), respectively. We present the
computational cost as a function of both the size of BD, and
the type of adversarial patch applied to the input.

The computational cost of clustering for clean images is
larger than for attacked images for both tasks. This follows
from the homogeneity of clean images, resulting in heavier
clustering computations. Triangular patches also seem to
have a higher cost than any number of rectangular patches.

We conjecture that due to the use of square kernels in the
convolutional layers, triangular patches result in sparser pat-
terns of important neurons, leading to more homogeneous
feature maps. While the cost of detection in Figure 13(b)
shows no clear relationship to the type of attack or even the
ensemble size, it is orders of magnitude smaller than the
cost of clustering, hence we can consider that the cost of
the detection stage is the cost of clustering. We can observe
that this computational time is insensitive to the number of
adversarial patches in the image, and finally, that the execu-
tion time increases with the ensemble size at a rate that is
approximately linear, in line with the fact that the attributes
used for detection are generated by performing |BD| iter-
ations of the first loop in Algorithm 1. It is important to
emphasize that other choices of attributes are possible, and
while our choice used for evaluation illustrates that Saliuitl
does not need to increase computational cost to handle non-
contiguous patches, this does not rule out that one might
choose different attributes that scale differently depending
on the number of adversarial regions in the input.

In Figure 13(c) we present the corresponding computa-
tional cost for recovery, note that in these results we as-
sume BD = BR = BB , hence although our mask pre-
processing scheme for evaluation relies on DBSCAN, no
clustering is performed in the recovery stage. Moreover, to
disregard abrupt input-dependent reductions in the compu-
tational time of recovery, we disable the second stopping
condition that applies only to image classification, which
terminates the recovery stage when the predicted label of
the inpainted input changes. We observe that recovery is
not dependent on the type of the adversarial patch attack,
but for image classification, clean images have a notably
lower cost. This is dependent on the first stopping condi-
tion for recovery, i.e., that the amount of important neurons
suffices to cover at least half of the total input region. Our
results are congruent with preliminary experiments indicat-
ing that in the case of image classification, the threshold for
which this condition holds true is notably higher for clean
images than for attacked images. The figure also shows that
as the size of BR increases, the computational cost again
tends to increase at an approximately linear rate. Impor-
tantly, recovery is notably more computationally expensive
than detection, which highlights the advantage of the two
stage design of Saliuitl, which only performs recovery if an
attack is detected. We present the total cost of Saliuitl in
Figure 13(d). In general, the computational cost increases
with ensemble size at an approximately linear rate, and in-
puts with triangular patches or no patches incur in a slightly
higher cost due an increased cost during the construction of
the ensemble attribute vector s.

We mentioned that preliminary experiments show that
the first stopping condition of the recovery stage occurs ear-
lier for image classification than for object detection. In
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Figure 13. Saliuitl’s computational cost as a function of the ensemble size and the number of patches, using all datasets. From top to
bottom: INRIA, Pascal VOC, ImageNet, CIFAR-10. Error bars represent the first and third quartiles across the dataset.

(a) INRIA (b) Pascal VOC (c) ImageNet (d) CIFAR-10

Figure 14. Number of important neurons for different saliency thresholds for all datasets. Solid lines represent median values, and shaded
regions represent the first and third quartiles.

Figure 14 we present the relevant results from said experi-
ments. The figure shows how the number of important neu-
rons changes for clean images and images with single and
multiple rectangular patches on subsets of each dataset. In
the main loop of the recovery stage, Saliuitl reduces the im-
portance threshold at each iteration, which corresponds to
going from right to left in the plots shown in Figure 14,
and for each iteration we terminate the recovery stage if the
region to be inpainted, dictated by the important neurons,
corresponds to an image region at least half as large as the
whole image. In Figure 14 we observe that as the number of
important neurons increases from right to left, the threshold
(iteration) at which the maximum value is reached for clean
images, is higher (occurs earlier) than for attacked images,

and in the case of ImageNet and CIFAR-10, the difference
is particularly large. Hence, we attribute the lower recov-
ery times for image classification to this phenomenon. Note
that this is not a general statement regarding a fundamental
difference for patch attacks on object detection and classi-
fication; our results are dependent on our choice of victim
models, shallow layers, datasets, and patch attack models.
This is further emphasized by the differences between Im-
ageNet and CIFAR-10 in Figure 14, which are congruent
with their differences in Figure 13(c).



Table 5. Detection stage ablation. Best Recovery Rate (RR) - Lost Prediction Rate (LPR) tradeoffs for single (1), double (2), quadruple (4),
triangular (T), and multi-object (MO) patch attack scenarios. Best attribute extraction and attack detection methods per row are in bold and
underlined, respectively. Note Saliuitl represents the default DBSCAN-based attributes and the 1D-CNN attack detector AD.

Attack Ensemble Attributes Attack Detector
Saliuitl Saliuitl-impneu Saliuitl-alt Saliuitl-svm
RR/LPR RR/LPR RR/LPR RR/LPR

INRIA-1 0.5909/0.0152 0.5909/0.0303 0.5909/0.0303 0.5606/0.0
INRIA-2 0.3871/0.0 0.3548/0.0 0.3710/0.0 0.3710/0.0
INRIA-T 0.4737/0.0526 0.4737/0.0526 0.4737/0.0526 0.4743/0.0526
INRIA-MO 0.4749/0.0 0.4860/0.0335 0.4804/0.0 0.4860/0.0056
VOC-1 0.5404/0.0293 0.5404/0.0293 0.5404/0.0293 0.5382/0.0243
VOC-2 0.5376/0.0125 0.5556/0.0337 0.5556/0.0337 0.5541/0.0274
VOC-T 0.4244/0.0348 0.4244/0.0348 0.4244/0.0348 0.4244/0.0348
VOC-MO 0.3955/0.0095 0.4069/0.0283 0.3832/0.0028 0.3991/0.0095

ImageNet-1 0.8869/0.0071 0.8809/0.0129 0.8763/0.0135 0.8721/0.0128
ImageNet-2 0.8535/0.0061 0.8523/0.0117 0.8470/0.0093 0.8442/0.0125
ImageNet-4 0.8436/0.0086 0.8562/0.0089 0.8544/0.0058 0.8513/0.0099
ImageNet-T 0.5065/0.0612 0.5896/0.0834 0.5959/0.0812 0.5092/0.0427
CIFAR-1 0.9738/0.0008 0.9645/0.0034 0.9560/0.0044 0.9708/0.0126
CIFAR-2 0.9789/0.0006 0.9688/0.0 0.9835/0.0247 0.9764/0.0097
CIFAR-4 0.9747/0.0 0.9778/0.0 0.9673/0.0005 0.9778/0.0085
CIFAR-T 0.8566/0.0 0.8411/0.0017 0.8428/0.0086 0.8601/0.0190

Table 6. Detection stage ablation. Best adversarial-clean nmAP tradeoffs for object detection. For single (1), double (2), triangular (T),
and multi-object (MO) patch attack scenarios. Best attribute extraction and attack detection methods per row are in bold and underlined,
respectively.

Attack Ensemble Attributes Attack Detector
Saliuitl Saliuitl-impneu Saliuitl-alt Saliuitl-svm

Adv./Clean Adv./Clean Adv./Clean Adv./Clean

INRIA-1 0.6897/0.9998 0.6362/1.0 0.6933/1.0 0.6922/1.0
INRIA-2 0.5998/1.0 0.5786/1.0 0.5786/1.0 0.5787/1.0
INRIA-T 0.7034/0.9987 0.7007/0.9566 0.7007/0.9566 0.7007/0.9566
INRIA-MO 0.4737/0.9999 0.4716/1.0 0.4776/0.9999 0.4767/0.9999
VOC-1 0.5094/0.9950 0.5145/0.9966 0.5155/0.9993 0.5167/0.9964
VOC-2 0.5088/0.9940 0.4977/0.9958 0.5035/0.9934 0.5012/0.9987
VOC-T 0.5043/0.9942 0.5182/0.9800 0.5041/0.9994 0.4999/0.9949
VOC-MO 0.3563/0.9877 0.3392/0.9958 0.3634/0.9944 0.3590/0.9997

Impact of Attribute Extraction and Detection
For our evaluation, the implementation of the detection
stage relies on four DBSCAN-based attributes to construct
the ensemble attribute vectors used for detection, more-
over, we propose to use the one-dimensional CNN detec-
tor network AD to compute the detection score. In this
section we evaluate alternative attributes for detection, and
we also explore the possibility of using a binary classi-
fier that is different from the proposed AD. Note that we
still use the DBSCAN-based approach during the recov-
ery stage regardless of the attribute extraction or attack de-
tection scheme. Moreover, in all cases we use the default
salience threshold sets BD and BR defined in Section 4.1,
that is, BD = BR = {x·max(mi)

20 }19x=0.

Alternative Attributes
We propose to use two sets of attributes that differ from our
DBSCAN-based attributes proposed in Section 4.1. In Sal-
iuitl-impneu we use only the first attribute used for evalua-
tion, that is, the number of important neurons. This allows
us to evaluate how well our scheme can maintain perfor-

mance using a simpler ensemble attribute vector that has
a significantly lower computational cost. In Saliuitl-alt we
extract four attributes from each binary feature map: mean,
variance, skewness, and kurtosis; these statistics are com-
puted across all neurons in the binary feature map. Using
these alternative attributes also results a reduction in exe-
cution time for our detection stage compared to the default
DBSCAN-based attributes. We re-train AD using these al-
ternative attributes. The training of AD, including the nor-
malization across each attribute for s remains unchanged
from our previous description; note that the training of AD
can be applied to any choice of attributes as long as they are
preprocessed adequately before being fed into AD.
Object Detection The first eight rows in Table 5 show the
best tradeoffs in terms of recovery and lost prediction rates
in object detection scenarios for our default implementation
of Saliuitl and our proposed alternative attribute extraction
approaches. The detailed tradeoffs can be found in Fig-
ures 15 and 16. We observe that the default implementation
is as good or better than the alternative attribute extraction
approaches for all object detection scenarios with the excep-
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Figure 15. Attribute extraction ablation. Recovery results for Object Detection (INRIA). From left to right: single, double, triangular, and
multi-object patch attacks.
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Figure 16. Attribute extraction ablation. Recovery results for Object Detection (Pascal VOC). From left to right: single, double, triangular,
and multi-object patch attacks.

tion of multi-object patches for INRIA, where Saliuitl-alt
achieves a better tradeoff. While all three instances of Sal-
iuitl perform rather similarly, the detailed tradeoffs show
that our default implementation is often able to achieve a

higher recovery rate by trading off an increase in lost pre-
diction rate that Saliuitl-impneu and Saliuitl-alt are unable
to achieve (e.g, see the tradeoffs achieved by Saliuitl at a
lost prediction rate of 0.015 for single patches in INRIA).
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Figure 17. Attribute extraction ablation. nmAP results for INRIA. From left to right: single, double, triangular, and multi-object patch
attacks.
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Figure 18. Attribute extraction ablation. nmAP results for Pascal VOC. From left to right: single, double, triangular, and multi-object patch
attacks.
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Figure 19. Attribute extraction ablation. Recovery results for Image Classification (ImageNet). From left to right: single, double, quadru-
ple, and triangular patch attacks.

Regarding the performance of these methods at fixed thresh-
olds on lost prediction and inflicted attack rates, we find that
the default approach has the upper hand in most INRIA sce-
narios (except for triangular patches), yet Saliuitl-impneu
and Saliuitl-alt achieve relatively high recovery rates at lost
prediction rates that are not attainable for Saliuitl on Pascal
VOC.

The best tradeoffs in terms of clean and adversarial
nmAP are shown in Table 6; the detailed tradeoffs are
shown in Figures 17 and 18. Saliuitl-alt is the best per-
forming attribute extraction approach in most scenarios, al-
though our default implementation is better for triangular
patches on INRIA and double patches on both INRIA and
Pascal VOC; notably we find that the superiority in the at-
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Figure 20. Attribute extraction ablation. Recovery results for Image Classification (CIFAR-10). From left to right: single, double,
quadruple, and triangular patch attacks.

tainable adversarial nmAP for the default implementation
for double patches on INRIA is the only case where any ap-
proach stands out with such a large margin. While Saliuitl
and Saliuitl-alt have quite similar performances, Saliuitl-
impneu has a notably lower performance in some scenarios
(e.g. single patches on INRIA); this indicates that extracting
multiple attributes that contribute with distinct information
for each input image can result in notable benefits for over-
all performance.
Image Classification The last eight rows of Table 5 show
the best recovery/lost prediction rate tradeoffs achieved
by the three attribute extraction approaches. The detailed
tradeoffs are shown in Figures 19 and 20. We find that the
default approach performs best in most scenarios, except
for quadruple and triangular patches on ImageNet, where
Saliuitl-alt is better, and quadruple patches on CIFAR-10,
where Saliuitl-impneu is better. Overall the three methods
have similar performances, although Saliuitl has notably
worse performance for triangular patches on ImageNet, it
is the best performing approach for triangular patches on
CIFAR-10. Overall, Saliuitl-alt has the upper hand regard-
ing recovery rate at fixed thresholds on the lost predic-
tion rate, while the default Saliuitl has the edge for fixed
thresholds on inflicted attacks. The image classification re-
sults further support that using a single attribute (Saliuitl-
impneu) will most likely hinder performance, whereas us-
ing different attributes (Saliuitl-alt) leads to a more moder-

ate impact (that can be either negative or positive).

Alternative Detector
Instead of feeding the ensemble attribute vector s to AD, we
explore the possibility of using an SVM classifier; we refer
to this alternative implementation as Saliuitl-svm. We use
the same training data for each dataset that we used to train
AD, however, we do not use any data for validation and in-
stead fit the SVM to all the training data. In particular we
use sci-kit learn’s support vector classification (SVC) im-
plementation [30] (version 1.2.2) with default parameters
(radial basis function kernel) and we use its class probabil-
ity estimates based on Platt’s scaling as the detection score.
We employ the four default DBSCAN-based attributes de-
scribed in Section 4.1.
Object Detection The first eight rows of Table 5 show the
best recovery/lost prediction rate tradeoffs achieved by Sal-
iuitl and Saliuitl-svm for object detection. Detailed trade-
offs are shown in Figures 21 and 22. Both detection ap-
proaches have similar performances, and in fact, Saliuitl-
svm enjoys equal or better tradeoffs for all scenarios ex-
cept for single and double patches on INRIA. Moreover,
we noted that compared to other attribute extraction ap-
proaches, the default Saliuitl was able to achieve certain
tradeoffs inaccessible to Saliuitl-impneu and Saliuitl-alt,
while this is still true when comparing to Saliuitl-svm in
some cases (e.g., single patches on INRIA), Saliuitl-svm
is able to attain such tradeoffs in scenarios where Saliuitl-
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Figure 21. Attack detector ablation. Recovery results for Object Detection (INRIA). From left to right: single, double, triangular, and
multi-object patch attacks.
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Figure 22. Attack detector ablation. Recovery results for Object Detection (Pascal VOC). From left to right: single, double, triangular, and
multi-object patch attacks.

impneu and Saliuitl-alt are not (e.g., triangular patches on
INRIA); this suggests that the choice of attributes is more
determinant than the choice of attack detector for the precise
tradeoffs achievable by Saliuitl. From the recovery rates at

fixed thresholds on lost predictions we observe that Saliuitl
and Saliuitl-svm are on par for INRIA, but Saliuitl-svm has
the upper hand on Pascal VOC, and is even able to attain
a relatively high recovery rate at zero lost prediction rates.
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Figure 23. Attack detector ablation. nmAP results for INRIA. From left to right: single, double, triangular, and multi-object patch attacks.
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Figure 24. Attack detector ablation. nmAP results for Pascal VOC. From left to right: single, double, triangular, and multi-object patch
attacks.
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Figure 25. Attack detector ablation. Recovery results for Image Classification (ImageNet). From left to right: single, double, quadruple,
and triangular patch attacks.

For inflicted attacks, Saliuitl outperforms Saliuitl-svm for
double attacks on INRIA, but both methods are essentially
similar on all other scenarios.

The comparison between Saliuitl and Saliuitl-svm in
terms on clean and adversarial nmAP tradeoffs is shown in
Table 6 and Figures 23 and 24. We observe that Saliuitl
performs best for double and triangular patches, while Sal-
iuitl-svm is better for single and multi-object patches. Both

methods perform quite similarly across all scenarios; simi-
lar to Saliuitl-impneu and Saliuitl-alt, Saliuitl-svm is unable
to achieve Saliuitl’s adversarial nmAP for double patches on
INRIA, regardless of its clean nmAP reduction. Overall the
results for object detection show that although the choice
of AD as a 1D CNN is in line with our proposed use of en-
semble attributes, alternative detectors can perform compar-
atively to AD when using our proposed ensemble attribute
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Figure 26. Attack detector ablation. Recovery results for Image Classification (CIFAR-10). From left to right: single, double, quadruple,
and triangular patch attacks.

vectors as inputs. This is also congruent with the data ef-
ficiency demonstrated by the performance of both AD and
the alternative SVM classifier, which need only a relatively
small amount of data to achieve good performances on the
evaluation datasets compared to existing defenses.
Image Classification The last eight rows of Table 5 show
the comparison of Saliuitl and Saliuitl-svm in terms of the
best recovery and lost prediction rate tradeoffs for image
classification; the detailed tradeoffs are shown in Figures 25
and 26. Saliuitl is able to find better tradeoffs than Saliuitl-
svm in most scenarios, with the exception of quadruple and
triangular patches on ImageNet, yet we observe the perfor-
mances of both methods are quite close to one another in
these two scenarios. On CIFAR-10, while Saliuitl achieves
the best tradeoffs, Saliuitl-svm is able to surpass its recov-
ery rate at a higher lost prediction rate in most scenarios.
Moreover, for fixed limits on the lost prediction rate, Sal-
iuitl-svm tends to outperform Saliuitl on ImageNet, while
the opposite is true for CIFAR-10. In terms of inflicted at-
tacks, Saliuitl is better than Saliuitl-svm in most scenarios,
with the exception of triangular patches on ImageNet. In
line with the object detection results, these results indicate
that an adequate choice of attributes allows Saliuitl to retain
(and even improve) its performance when using alternative
attack detection schemes. This represents a significant ad-
vantage for Saliuitl, as the potential flexibility for the attack
detection scheme might be useful in applications with con-

strained resources for both training and inference. We con-
sider the exploration of how different classifiers scale with
the size of the ensemble BD or the number of attributes nf

to be the scope of future work.



Table 7. Recovery stage ablation. Best Recovery Rate (RR) - Lost Prediction Rate (LPR) tradeoffs for single (1), double (2), quadruple
(4), triangular (T), and multi-object (MO) patch attack scenarios. Best mask preprocessing and inpainting methods per row are in bold and
underlined, respectively. Note Saliuitl represents the default methods for both mask preprocessing and inpainting.

Attack Mask Preprocessing Inpainting
Saliuitl Saliuitl-direct Saliuitl-mf Saliuitl * Saliuitl-z Saliuitl-m
RR/LPR RR/LPR RR/LPR RR/LPR RR/LPR RR/LPR

INRIA-1 0.5909/0.0152 0.5606/0.0303 0.5606 /0.0 0.6364/0.0 0.4848/0.0 0.5455/0.0
INRIA-2 0.3871/0.0 0.4194/0.0 0.4516/0.0 0.7258/0.0 0.4516/0.0 0.4677/0.0
INRIA-T 0.4737/0.0526 0.5263/0.0702 0.4737/0.0351 0.5439/0.0 0.3333/0.0351 0.4737/0.0
INRIA-MO 0.4749/0.0 0.4860/0.0 0.4749/0.0 0.6760/0.0 0.3464/0.0 0.3631/0.0
VOC-1 0.5404/0.0293 0.5525/0.0343 0.5232/0.0293 0.6455/0.0 0.4732/0.0293 0.4918/0.0264
VOC-2 0.5376/0.0125 0.5408/0.0094 0.5282/0.0094 0.6763/0.0 0.4334/0.0102 0.4843/0.0078
VOC-T 0.4244/0.0348 0.4280/0.0376 0.3951/0.0302 0.4904/0.0 0.3602/0.0321 0.3740/0.0275
VOC-MO 0.3955/0.0095 0.4023/0.0078 0.3821/0.0064 0.5811/0.0 0.2679/0.0085 0.3150/0.0081

ImageNet-1 0.8869/0.0071 0.8861/0.0067 0.8789/0.0067 0.9325/0.0001 0.8830/0.0093 0.9380/0.0095
ImageNet-2 0.8535/0.0061 0.8396/0.0052 0.8413/0.0064 0.9165/0.0001 0.8586/0.0096 0.8600/ 0.0097
ImageNet-4 0.8436/0.0086 0.8188/0.0074 0.8244/0.0091 0.9170/0.0001 0.8476/0.0095 0.8506/0.0096
ImageNet-T 0.5065/0.0612 0.8424/0.2085 0.6081/0.0491 0.9054/0.0003 0.5468/0.0721 0.5550/0.0706
CIFAR-1 0.9738/0.0008 0.9907/0.0 0.9837/0.0 0.9937/0.0004 0.9744/0.0 0.9746/0.0
CIFAR-2 0.9789/0.0006 0.9872/0.0023 0.9841/0.0008 0.9934/0.0003 0.9653/0.0011 0.9676/0.0015
CIFAR-4 0.9747/0.0 0.9811/0.0021 0.9811/0.0 0.9893/0.0003 0.9504/0.0001 0.9530/0.0003
CIFAR-T 0.8566/0.0 0.9775/0.0035 0.9689/0.0086 0.9275/0.0 0.9551/0.0501 0.9396/0.0380

Table 8. Recovery stage ablation. Best adversarial-clean nmAP tradeoffs for object detection. For single (1), double (2), triangular (T),
and multi-object (MO) patch attack scenarios. Best mask preprocessing and inpainting methods per row are in bold and underlined,
respectively. Note Saliuitl represents the default methods for both mask preprocessing and inpainting.

Attack Mask Preprocessing Inpainting
Saliuitl Saliuitl-direct Saliuitl-mf Saliuitl * Saliuitl-z Saliuitl-m

Adv./Clean Adv./Clean Adv./Clean Adv./Clean Adv./Clean Adv./Clean

INRIA-1 0.6897/0.9998 0.6866/0.9999 7273/0.9999 0.7213/1.0 0.6988/0.9963 0.6709/0.9984
INRIA-2 0.5998/1.0 0.6707/0.9997 0.6465/1.0 0.7191/1.0 0.6045/1.0 0.6879/0.9980
INRIA-T 0.7034/0.9987 0.6735/0.9980 0.6324/0.9986 0.6901/1.0 0.5731/1.0 0.6225/0.9939
INRIA-MO 0.4737/0.9999 0.4478/0.9999 0.4468/1.0 0.5505/1.0 0.3970/0.9773 0.4164/0.9999
VOC-1 0.5094/0.9950 0.5167/0.9941 0.5188/0.9957 0.5960/1.0 0.4439/0.9904 0.4809/0.9885
VOC-2 0.5088/0.9940 0.5094/0.9956 0.5150/0.9973 0.6196/1.0 0.4251/0.9889 0.4635/0.9943
VOC-T 0.5043/0.9942 0.5010/0.9931 0.5172/0.9917 0.5778/1.0 0.4645/0.9941 0.4872/0.9929
VOC-MO 0.3563/0.9877 0.3596/0.9907 0.3809/0.9929 0.4987/1.0 0.2570/0.9897 0.3246/0.9853

Impact of Mask Preprocessing and Inpainting
In our implementation, during the recovery stage Saliuitl
uses DBSCAN results from the binary feature map corre-
sponding to each threshold in BR to determine potentially
adversarial image regions (for an input xi and its feature
map mi); moreover, it uses biharmonic inpainting to pro-
duce x̂i. Here we show results for alternative choices re-
garding these two components, namely mask preprocessing
and inpainting. For any choice of mask preprocessing and
inpainting methods in this section, the default DBSCAN ap-
proach with the proposed 1D CNN AD for attack detection
is used in the detection stage. Once again we use the de-
fault saliency threshold sets for detection and recovery, that
is, BD = BR = {x·max(mi)

20 }19x=0.

Mask Preprocessing
We propose two alternatives for mask preprocessing. In Sal-
iuitl-direct we skip mask preprocessing for all binary fea-
ture maps altogether, i.e., for each mi and each threshold
βr ∈ BR, we inpaint all image regions corresponding to
the neurons in the resulting binary feature map Br. In Sal-

iuitl-mf we apply uniform filtering on Br and determine the
inpainted regions using only neurons that remain after ap-
plying the uniform filter. We use sci-kit image’s uniform
filter implementation [37] (version 0.19.3) and set the ker-
nel size to 2.
Object Detection In Table 7 (first eight rows) we show
the best tradeoffs in terms of recovery and lost prediction
rates achieved by Saliuitl, Saliuitl-direct, and Saliuitl-mf,
on all datasets. The detailed tradeoffs are provided in Fig-
ures 27 and 28. We observe that in most cases Saliuitl-direct
achieves the best tradeoffs, except for single and double
patches on INRIA, where Saliuitl and Saliuitl-mf achieve
the best performance, respectively. Despite their differences
in performance, the three approaches show similar trade-
offs in the figures, distinct from the detection stage ablations
where different methods seemed to find tradeoffs exclusive
to themselves (e.g. Saliuitl for single patches on INRIA or
Saliuitl-svm for quadruple patches on CIFAR-10); this sug-
gests that the detection stage has an important role in de-
termining what specific attacks are recoverable by Saliuitl.
For fixed limits on the lost prediction rate, Saliuitl seems to
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Figure 27. Mask preprocessing ablation. Recovery results for Object Detection (INRIA). From left to right: single, double, triangular, and
multi-object patch attacks.
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Figure 28. Mask preprocessing ablation. Recovery results for Object Detection (Pascal VOC). From left to right: single, double, triangular,
and multi-object patch attacks.

perform worse than both Saliuitl-direct and Saliuitl-mf on
Pascal VOC, but outperforms both of them for fixed limits
on the inflicted attack rate on INRIA.

We further compare the different mask preprocessing

methods in terms of clean and adversarial nmAP in Table 8
and Figures 29 and 30. In contrast with the results on recov-
ery and lost prediction rates, Saliuitl-direct achieves the best
tradeoff only for double patches on INRIA, while Saliuitl -
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Figure 29. Mask preprocessing ablation. nmAP results for INRIA. From left to right: single, double, triangular, and multi-object patch
attacks.
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Figure 30. Mask preprocessing ablation. nmAP results for Pascal VOC. From left to right: single, double, triangular, and multi-object
patch attacks.
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Figure 31. Mask preprocessing ablation. Recovery results for Image Classification (ImageNet). From left to right: single, double,
quadruple, and triangular patch attacks.

mf achieves the best tradeoffs in most other scenarios, with
the exception of triangular and multi-object patches, where
the default Saliuitl is the best performing approach. These
results suggest that Saliuitl-direct, by being more aggres-
sive and considering that any neuron in Br corresponds to
a patch attack, is able to achieve a better tradeoff between
recovery and lost prediction rates, but at the same time it

may become more disruptive than Saliuitl and Saliuitl-mf
in terms of clean and adversarial nmAP; this is similar to
what was observed for Object Seeker in Section 4.2.
Image Classification The bottom half of Table 7 shows
the best recovery-lost prediction rate tradeoffs, and the de-
tailed tradeoffs are shown in Figures 31, and 32. We note
that Saliuitl is the best performing approach for most Ima-



0.00 0.02 0.04 0.06 0.08 0.10
Lost Predictions

0.94

0.95

0.96

0.97

0.98

0.99

Re
co

ve
ry

 R
at

e Saliuitl
Saliuitl-direct
Saliuitl-mf

0.00 0.02 0.04 0.06 0.08 0.10
Lost Predictions

0.96

0.97

0.98

0.99

Re
co

ve
ry

 R
at

e

0.00 0.02 0.04 0.06 0.08 0.10
Lost Predictions

0.960

0.965

0.970

0.975

0.980

0.985

Re
co

ve
ry

 R
at

e

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Lost Predictions

0.850

0.875

0.900

0.925

0.950

0.975

Re
co

ve
ry

 R
at

e

0.0 0.001 0.01 0.025 0.05
Lost Predictions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 R
at

e

Saliuitl
Saliuitl-direct
Saliuitl-mf

0.0 0.001 0.01 0.025 0.05
Lost Predictions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 R
at

e

0.0 0.001 0.01 0.025 0.05
Lost Predictions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 R
at

e

0.0 0.001 0.01 0.025 0.05
Lost Predictions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 R
at

e

0.0 1e-06 0.001 0.01 0.025 0.05 0.1
Inflicted Attacks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 R
at

e

Saliuitl
Saliuitl-direct
Saliuitl-mf

0.0 1e-06 0.001 0.01 0.025 0.05 0.1
Inflicted Attacks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 R
at

e

0.0 1e-06 0.001 0.01 0.025 0.05 0.1
Inflicted Attacks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 R
at

e
0.0 1e-06 0.001 0.01 0.025 0.05 0.1

Inflicted Attacks
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 R
at

e

Figure 32. Mask preprocessing ablation. Recovery results for Image Classification (CIFAR-10). From left to right: single, double,
quadruple, and triangular patch attacks.

geNet scenarios, except for triangular patches, where Sal-
iuitl-direct is better. Saliuitl-direct is also the best method
for most CIFAR-10 scenarios, except for quadruple patches,
where Saliuitl-mf is better. All three approaches have simi-
lar performances in image classification scenarios. At fixed
thresholds on lost predictions, the three approaches perform
similarly in most scenarios, although Saliuitl has a signifi-
cant advantage for triangular patches on CIFAR-10, inter-
estingly, except for this very scenario, Saliuitl has a clear
superiority for a fixed threshold on inflicted attacks. The
results are also congruent with the results for object detec-
tion, in that Saliuitl-direct seems to be the most disruptive
approach; in some cases, this pays off and Saliuitl-direct is
able to find a better tradeoff than both Saliuitl and Saliuitl-
mf, but this often comes at a higher rate of lost predictions,
the much higher recovery and lost prediction rates for Sal-
iuitl-direct for triangular patches on ImageNet in Table 7
illustrate this most clearly.

Inpainting
In Section 4, we mention that Saliuitl employs biharmonic
inpainting for our evaluation. In particular, we use sci-kit
image’s implementation [37] (version 0.19.3) which does
not require setting any hyper-parameters. To illustrate the
importance of inpainting in Saliuitl’s recovery stage we con-
sider three alternative inpainting approaches. Saliuitl * is
an ideal version of Saliuitl where inpainting is performed
by replacing “inpainted” pixels with their corresponding

ground truth values from the original clean image; while
this is not a realistic baseline, it provides an insightful ref-
erence for the limits on the performance of Saliuitl for any
inpainting approach we might consider. Saliuitl-z is a sim-
pler version of Saliuitl, where inpainting is performed by
replacing the relevant pixels with zeros instead; finally, Sal-
iuitl-m is another simple approach where the relevant pixels
are replaced not with zeros but with the mean pixel value
from pixels outside the inpainted region.
Object Detection The first eight rows of Table 7 show the
best tradeoffs achieved by each approach in terms of re-
covery and lost prediction rates; the detailed tradeoffs are
shown in Figures 33 and 34. As one might expect, Saliuitl *
achieves the best performance in all scenarios. Interestingly,
the default Saliuitl is second best in most scenarios except
for double patches on INRIA, where Saliuitl has the worst
performance, and triangular patches on INRIA, where Sal-
iuitl-m performs better. The figures also show that when
imposing fixed thresholds on lost predictions and inflicted
attacks Saliuitl * has a clear advantage, with Saliuitl being
second best in most scenarios, except for double and tri-
angular patches on INRIA. The results suggest that more
elaborate inpainting approaches usually lead to an increase
in recovery performance, but not in all scenarios. In par-
ticular we find that simpler schemes might be preferable in
scenarios where it is relatively straightforward to maintain
a low lost prediction rate; for example, in the double patch
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Figure 33. Inpainting ablation. Recovery results for Object Detection (INRIA). From left to right: single, double, triangular, and multi-
object patch attacks.
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Figure 34. Inpainting ablation. Recovery results for Object Detection (Pascal VOC). From left to right: single, double, triangular, and
multi-object patch attacks.

scenario on INRIA both Saliuitl-z and Saliuitl-m are able
to match Saliuitl’s low lost prediction rate, but are capable
of achieving a higher recovery rate (see Table 7 and Fig-
ure 33). Crucially, the performance of Saliuitl * shows that

even with perfect inpainting, not all attacks are recoverable
by Saliuitl.

We also show the best tradeoffs in terms of clean and ad-
versarial nmAP in Table 8 and Figures 35 and 36. While
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Figure 35. Inpainting ablation. nmAP results for INRIA. From left to right: single, double, triangular, and multi-object patch attacks.

0.80 0.85 0.90 0.95 1.00
Clean nmAP

0.40

0.45

0.50

0.55

0.60

Ad
ve

rs
ar

ia
l n

m
AP Saliuitl

Saliuitl*
Saliuitl-z
Saliuitl-m

0.90 0.92 0.94 0.96 0.98 1.00
Clean nmAP

0.40

0.45

0.50

0.55

0.60
Ad

ve
rs

ar
ia

l n
m

AP

0.850 0.875 0.900 0.925 0.950 0.975 1.000
Clean nmAP

0.40

0.45

0.50

0.55

Ad
ve

rs
ar

ia
l n

m
AP

0.850 0.875 0.900 0.925 0.950 0.975 1.000
Clean nmAP

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ad
ve

rs
ar

ia
l n

m
AP

Figure 36. Inpainting ablation. nmAP results for Pascal VOC. From left to right: single, double, triangular, and multi-object patch attacks.
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Figure 37. Inpainting ablation. Recovery results for Image Classification (ImageNet). From left to right: single, double, quadruple, and
triangular patch attacks.

Saliuitl * retains its superiority in terms of nmAP for most
scenarios, intriguingly Saliuitl has a better tradeoff for trian-
gular patch attacks on INRIA. For most other cases Saliuitl
is only second to Saliuitl *, except for double patches on IN-
RIA, where it is once again the worst performing method.
These results further support the notion that a better inpaint-
ing approach usually leads to a better performance, and that
this need not be the case for all scenarios.
Image Classification The best achieved tradeoffs for the

distinct inpainting approaches are shown in the last eight
rows of Table 7, and the detailed tradeoffs are shown in Fig-
ures 37 and 38. Once again we observe that Saliuitl * per-
forms best as one might expect. Interestingly, while Saliuitl
outperforms Saliuitl-z and Saliuitl-m on CIFAR-10, these
simpler inpainting approaches outperform Saliuitl for most
ImageNet scenarios, except for single patch attacks. For
fixed thresholds on the lost prediction rate, Saliuitl * per-
forms best, while Saliuitl performs either similarly or bet-
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Figure 38. Inpainting ablation. Recovery results for Image Classification (CIFAR-10). From left to right: single, double, quadruple, and
triangular patch attacks.

ter than Saliuitl-z and Saliuitl-m in all other scenarios. In-
triguingly, for fixed thresholds on the inflicted attack rate,
Saliuitl can even outperform Saliuitl * for all rectangular
patch scenarios on CIFAR-10, while Saliuitl * is the best
performing approach for all other scenarios. These results
show that inpainting also has a relevant impact on recov-
ery performance for image classification; most notably, a
more complex and precise inpainting approach can result in
remarkable improvements in terms of lost predictions and
inflicted attacks. At the same time, these results confirm
that a better inpainting approach does not always result in a
better performance.

Balancing Saliuitl’s recovery performance and compu-
tational cost from the perspective of inpainting may be an
interesting avenue to explore in future work. As shown in
Figure 4(a), our default biharmonic inpainting can attain a
reasonable computational cost, hence it could be valuable to
explore more complex inpainting approaches. On the other
hand, comparing Tables 7 and 8 to Tables 1 and 2 shows that
simpler approaches like Saliuitl-m and Saliuitl-z are also
competitive and even superior to most existing approaches,
therefore it would also be relevant to explore the possibil-
ity of improving the performance of Saliuitl-m or Saliuitl-z
(e.g., with a larger size for the ensemble BR).
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Figure 39. Comparison of Saliuitl’s computational cost for the detection and recovery stage ablations, on all datasets. Error bars represent
the first and third quartiles across the dataset.

Trading off computational cost and performance
In our analyses of Figure 4(a) in Section 4.2, we argue that
Saliuitl can attain a low computational cost while maintain-
ing an adequate attack recovery performance, based on the
comparison to the baselines’ at their default parameters in
terms of execution time.

Now, to show explicitly the recovery performances that
correspond to our reported execution times for Saliuitl,
consider our results in Figure 12, which shows extensive
combinations of |BD| and |BR|, including the cases where
BD = BR on which we based our computational cost com-
parisons. In Figure 12 we display the recovery performance
achieved by each choice of |BR| across all datasets and at-
tack models, for different choices of |BD|. Recall that to
relate Figure 12 to Figure 4(a), one must focus on those
cases where |BD| = |BR| = |BB |. Hence we can see that,
e.g., when we select |BB | = 10 in the INRIA dataset, de-
spite Saliuitl’s low computational cost, comparable to Jedi
and not too far above that of Themis (see Figure 4(a)), the
recovery performance attained (see Figure 12(b), top row)
is superior to most baselines in all scenarios, and only be-
low that of Object Seeker (see Table 1). Moreover, if re-
covery performance is more desirable than the remarkable
efficiency gains, reverting to the default |BD| = |BR| = 20
can achieve a notable performance increase while still main-
taining the upper hand on Object Seeker in terms of effi-
ciency, with a computational cost that is twice as low (see
Figure 4(a), and either Figure 12(c), top row, or Table 1).

We may also consider the ablation experiments regard-
ing ensemble attributes, detection schemes, mask prepro-
cessing, and inpainting. Figure 39 shows the comparison
between the default DBSCAN-based instance of Saliuitl
used for evaluation, along with all the different ablations
for these components, whose performance in terms of re-
covery and lost prediction rates is summarized in Tables 5
and 7. Figure 39 shows the performance of these alternative
implementations of Saliuitl using the default ensemble size
of 20 for both BD and BR, and setting α∗ = 0.5. We ob-

serve that simpler attribute extraction approaches can yield
significant performance gains (as seen for Saliuitl-impneu
and Saliuitl-alt), and the same can be said for simpler in-
painting approaches (Saliuitl-z and Saliuitl-m). This allows
Saliuitl to, for example, maintain superiority over all other
baselines in terms of nmAP at much lower computational
cost, by using different ensemble attributes and still outper-
form the best settings of existing defenses: comparing Ta-
ble 6 with Table 2, it is evident that Saliuitl-alt outperforms
all existing defenses, and comparing Figure 4(a) with Fig-
ure 39 one can see that the computational cost of Saliuitl-
alt is on par with Themis and even below (e.g., notice their
cost for clean images). Furthermore, one may also apply a
simpler inpainting approach as in Saliuitl-z and Saliuitl-m,
or even replace the entire recovery stage with existing de-
fenses with negligible cost such as FNS or NutNet. We con-
sider such explorations to tradeoff computational efficiency
and performance to be within the scope of future work.

Additional Attack and Defense Baselines
For completeness, we present additional results considering
defenses and attacks not included in our main evaluations
from Section 4.2.

Defenses
Segment and Complete (SAC) is a recovery approach that
performs segmentation to identify adversarial regions and
then shape completion to obtain a refined mask for the input
image. A U-Net architecture is trained to segment ground
truth adversarial regions in patched images, self-adversarial
training is also used to robustify the segmenter by using
patches that are trained to bypass it. The segmenter as-
signs adversarial probability scores to each pixel in the in-
put image, thus the mask from the segmenter consists of
all pixels with a score above 0.5. For shape completion,
the ground truth patch size or a set of feasible sizes is re-
quired to produce candidate masks that are aggregated into
a final refined mask, which is finally applied to the input



image. Total Variation based image Resurfacing (TVR) is
a recovery method designed to handle multiple patch sce-
narios [33]. It considers each input color channel separately
and for a fixed block size of k×k pixels, it computes block-
wise total variation using a k × k sliding window. Outlier
blocks in the image are those with a total variation above
Q3 + 1.5 · (Q3 − Q1) where Q1 and Q3 are the first and
third quartiles of the total variation values of all blocks in
the image. The outlier blocks from each color channel are
combined to produce a mask for the input image. Masked
regions are inpainted by feeding the masked input to a gen-
erative adversarial network trained to reconstruct images.

SAC is a common point of comparison in the papers for
most of our baselines [26]. We favored said baselines over
SAC for evaluation in Section 4.2 because they are more
recent and present results showing they generally outper-
form SAC. TVR is interesting due to its explicit treatment
of multiple patch scenarios, however we were unaware of
it when we performed our evaluations. Moreover our base-
lines already include more recent empirical approaches that
in principle handle multiple patches as well.

For evaluation we vary the parameters of these two base-
lines as follows: for SAC we vary the thresholds on the seg-
menter’s output probability and the threshold used for the
shape completion mask in the range [0.1, 0.9] in increments
of 0.1. Interestingly, while the threshold for shape comple-
tion can be found in the official code for SAC (and set by
default at 0.5), it was not mentioned in their paper [26]. For
TVR, the feasible range of the block size k is determined by
the image size, since the block size must be a factor of the
image size. Thus we use block sizes from 13 to 208 for IN-
RIA/VOC, from 7 to 112 for ImageNet, and from 6 to 96 for
CIFAR-10, such that each increasing block size doubles the
previous size. Due to the high computational cost of TVR,
we only apply it on the full dataset for INRIA scenarios. For
all other datasets, we evaluate only on 1000 images.

Table 9 shows the results for SAC and TVR in terms of
recovery rate and lost prediction tradeoffs, we also include
Saliuitl for reference. While SAC performs quite well for
single patches, it clearly struggles to adapt to triangular and
multiple patch scenarios. Interestingly, we found that while
the original paper makes no mention of multiple patch at-
tacks, the official implementation seems to contain some
functionalities for that purpose, but they require SAC to
know the number of patches beforehand, thus using them
would lead to an unfair evaluation, moreover, for the multi-
object (MO) scenarios, the number of patches depends on
the ground truth objects in the scene, which emphasizes the
flaws of assuming access to this information. We find that
TVR performs quite poorly for attacks on object detection,
and despite its explicit treatment of multiple patches, it per-
forms even worse for multiple and triangular patches. For
image classification TVR performs reasonably well and is

Table 9. Best Recovery Rate (RR) - Lost Prediction Rate (LPR)
trade-offs for single (1), double (2), quadruple (4), triangular (T),
and multi-object (MO) patch attack scenarios. The best method
per row is in bold, according to RR minus LPR.

Attack Saliuitl SAC TVR
RR/LPR RR/LPR RR/LPR

INRIA-1 0.5909/0.0152 0.3030/0.0 0.1970/0.0909
INRIA-2 0.3871/0.0 0.1129/0.0 0.1290/0.1129
INRIA-T 0.4737/0.0526 0.0526/0.0 0.0877/0.1228
INRIA-MO 0.4749/0.0 0.1229/0.0 0.0838/0.0838
VOC-1 0.5404/0.0293 0.3102/0.0071 0.1964/0.1236
VOC-2 0.5376/0.0125 0.1426/0.0063 0.1299/0.1339
VOC-T 0.4244/0.0348 0.0174/0.0816 0.0188/0.1408
VOC-MO 0.3955/0.0095 0.0813/0.0046 0.0654/0.1166

ImageNet-1 0.8869/0.0071 0.8667/0.0013 0.9150/0.0507
ImageNet-2 0.8535/0.0061 0.1812/0.0013 0.8310/0.0452
ImageNet-4 0.8436/0.0086 0.1429/0.0012 0.8260/0.1928
ImageNet-T 0.5065/0.0612 0.3695/0.0033 0.3421/0.1842
CIFAR-1 0.9738/0.0008 0.9174/0.0002 0.9560/0.0549
CIFAR-2 0.9789/0.0006 0.3892/0.0002 0.9500/0.0462
CIFAR-4 0.9747/0.0 0.2258/0.0001 0.9380/0.0705
CIFAR-T 0.8566/0.0 0.4801/0.0017 0.6290/0.1613

Table 10. Best Recovery Rate (RR) - Lost Prediction Rate (LPR)
trade-offs for INRIA/VOC single patch attacks using different
patches. Best performances in bold, according to RR minus LPR.

Attack Saliuitl (Princess) Saliuitl (TSEAv3) Saliuitl (Dogv2)
RR/LPR RR/LPR RR/LPR

INRIA-1 0.5909/0.0152 0.6471/0.0 0.5976/0.0122
VOC-1 0.5404/0.0293 0.5504/0.0025 0.5157/0.0264

able to retain a decent performance for multiple patches, al-
though it experiences a very large drop in performance for
triangular patches. Our results suggest that TVR can indeed
handle multiple patches in certain scenarios, but our results
in Table 1 show that other baselines are more resilient to an
increase in the number of patches; we also note TVR seems
to be mostly limited to scenarios where the victim model
task is image classification. Most importantly, we point out
that Saliuitl thoroughly dominates both SAC and TVR for all
scenarios.

Attacks
There is a considerable amount of patch attacks that one
could consider for evaluation. In our description of the
patch attack models we justify our choices, and it is also
important to note that our adaptive attack scenario presents
a patch that is more challenging than any we could choose
from the wide collection of publicly available patches in the
literature. To further demonstrate Saliuitl’s effectiveness for
different types of attacks, we present results on two more
patch attacks for object detection, the naturalistic Dogv2
patch from [20] and the TSEAv3 patch from [21]. In Ta-
ble 10 we show the recovery rate and lost prediction trade-
offs achieved by Saliuitl for single patch scenarios using
these new patches, and for reference we include the results
we obtained in our evaluation using the Princess patch, note



no further training is performed. Saliuitl is able to retain its
performance for these new patches, and in fact performs
better than it does for the Princess patch in most cases,
confirming that we chose a reasonably challenging patch
for evaluation; the only exception to this trend is Saliuitl’s
slightly lower recovery rate for VOC with the Dogv2 patch.


