
SketchAgent: Language-Driven Sequential Sketch Generation
Supplementary Material

Yael Vinker1 Tamar Rott Shaham1 Kristine Zheng2 Alex Zhao1 Judith E Fan2 Antonio Torralba1

1MIT
{yaelvink,tamarott,alexzhao,torralba}@mit.edu

2Stanford University
{jefan,kxzheng}@stanford.edu

https://sketch-agent.csail.mit.edu/

Contents

1. Technical Details 1

2. More Results and Analysis 2
2.1. Quantitative Text-Conditioned Analysis . . . 2
2.2. Sequential sketching 7
2.3. Human-Agent Collaborative Sketching . . . 12
2.4. Chat-Based Editing 13

3. Ablation Study 15

4. Prompts and More Results 16

The supplementary material describes in detail the experi-
ments from the main paper, as well as provides additional
analysis results. Please refer to the provided video for
additional visual results.

IRB Disclosure We received IRB approvals for all user stud-
ies, from all of the institutions involved. Accordingly, we took
measures to ensure participant anonymity and refrained from
showing them potentially offensive content.

1. Technical Details
We will publicly release the full source code, including our inter-
active platform. Our default backbone model is Claude3.5-Sonnet
(version 20240620) [1]. We use the official API of Anthropic,
with an average cost of $0.05 per sketch. We employ CairoSVG
[9] for rendering the SVG onto the canvas. Our output sketches are
also provided in SVG format to facilitate further editing if needed.
SketchAgent generates a complete sketch in approximately 20 sec-
onds, with individual strokes in collaborative mode taking about
3.5 seconds each. For the CLIP zero-shot classification, we use
the clip-vit-large-patch14 model from Hugging Face [4]. Our can-
vas is defined as a 50×50 grid with numbers labeled on the bottom
and left edges. Each cell corresponds to a patch of size 12 × 12
pixels, chosen to ensure a clear display of the grid numbers along
the edges. This configuration results in a 612 × 612 pixels grid,
with the drawing area confined to a 600 × 600 pixel range. All

Figure 1. Visualization of single-stroke primitives used in the sys-
tem prompt to introduce the grid and sketching language to the
agent.

Figure 2. Visualization of the simple sketch of a house provided
as an in-context example, represented with our sketching language
through the user prompt.

prompts used in our method are provided in Figs. 37, 38 and 41.
The examples provided to the agent in the system and user prompts
are visualized in Fig. 1 and Fig. 2 respectively.

We use Claude3.5-Sonnet in its default settings, which results
in significant variability in results, given the highly diverse nature
of LLMs. For example, in Fig. 3, we present 12 sketches pro-
duced by our method for the concept “rabbit”, demonstrating high
diversity in pose, structure, and quality. To generate variations in
the experiments described in Section 5.1 of the main paper (where
we applied our method 10 times per category), we use the default

1

https://sketch-agent.csail.mit.edu/

Figure 3. Sketch variability. Example of twelve different sketches
produced for the concept “rabbit” by SketchAgent, with the same
settings.

settings of Claude3.5-Sonnet. However, during controlled experi-
mental conditions, we reduce variability by setting the temperature
to 0 and top k to 1, ensuring deterministic outputs. For general
use, we recommend the stochastic version to encourage more var-
ied and creative outputs.

2. More Results and Analysis
As described in Section 5.1 of the main paper, SketchAgent is ca-
pable of generating sketches for a wide range of concepts that ex-
tend beyond standard categories. Here we provide additional re-
sults to support this claim. We define three unique categories that
require general knowledge: Scientific Concepts, Diagrams, and
Notable Landmarks, and utilize ChatGPT-4o to produce 10 ran-
dom textual concepts for each category, resulting in the following
random concepts:
• Scientific Concepts: Double-slit experiment, Pendulum mo-

tion, Photosynthesis, DNA replication, Newton’s laws of motion,
Electromagnetic spectrum, Plate tectonics, Quantum entangle-
ment, Cell division (mitosis), Black hole formation.

• Diagrams: Circuit diagram, Flowchart, Organizational chart,
ER diagram (Entity-Relationship), Venn diagram, Mind map,
Gantt chart, Network topology diagram, Pie chart, Decision
tree.

• Notable Landmarks: Taj Mahal, Eiffel Tower, Great Wall of
China, Pyramids of Giza, Statue of Liberty, Colosseum, Sydney
Opera House, Big Ben, Mount Fuji, Machu Picchu.

We generate five sketches for each concept (producing 50 sketches
per category) by applying our method five times using its default
settings. Figures 4 to 6 present the results for Scientific Con-
cepts, Diagrams, and Notable Landmarks, respectively. The re-
sulting sketches generally depict the concepts well, demonstrating
diversity in the outputs. As can be seen, our method can gener-
ate a diverse set of different types and instances per concept (see
double-slit experiment, pendulum motion, Electromagnetic spec-
trum in Fig. 4 and Flowchart, Network typology diagram in Fig. 5).
Naturally, within each set, some concepts were depicted very suc-
cessfully, while some outputs were less successful (e.g., Statue of
Liberty, photosynthesis, pie chart).

Double-slit
experiment

Pendulum
motion

Photo-
synthesis

DNA
replication

Newton s
laws

of motion

Electro-
magnetic
spectrum

Plate
tectonics

Quantum
entan-

glement

Cell
division
(mitosis)

Black hole
formation

Figure 4. Randomly selected sketches of scientific concepts. Ten
textual concepts were randomly selected using GPT-4o. Five
sketches were generated per concept, showcasing the variability
and diversity of the outputs.

2.1. Quantitative Text-Conditioned Analysis

In Section 5.1 of the main paper, we presented a quantitative anal-
ysis of text-conditioned sketch generation across 50 selected cat-
egories from the QuickDraw dataset [7]. Here, we provide ad-
ditional details, visual examples, and further analysis of the ex-
periment. We begin by providing further analysis of the CLIP
classification rates of our default settings (Claude3.5-Sonnet) to
explore recognition patterns. Figure 7 shows the confusion matrix
(top 10 confused categories out of 50) for our set of 500 sketches.
The most commonly confused classes are: “shark”, which was
often misclassified as a “fish”, “octopus”, which was frequently
identified as a “spider”; and “snake”, which was misclassified as
a “squiggle”. These confused classes often fall within highly re-
lated classes (such as a fish and a shark, or a school bus and a

2

Circuit
diagram

Flowchart

Organiza-
tional chart

ER diagram
(Entity-

Relationship)

Venn
diagram

Mind
map

Gantt
chart

Network
topology
diagram

Pie
chart

Decision
tree

Figure 5. Randomly selected sketches of diagrams across fields.
Ten textual concepts were randomly selected using GPT-4o. Five
sketches were generated per concept, showcasing the variability
and diversity of the outputs.

bus), suggesting that our method struggles with emphasizing dis-
tinctive features, likely due to its inherently abstract style. In
Fig. 8, we visualize sketches from the six most confused classes
with the correct class shown in green and the misclassified class
shown in red. Figure 9 visualize the 10 top recognized classes.
The class “fish” was correctly identified across all seeds, followed
by “house”, “umbrella”, and “table”, which were correctly rec-
ognized in 90% of trials (9 out of 10). Recognition rates for
other classes ranged from 70% to 20%. In Section 5.1 of the
main paper, we compared the performance of different multimodal
LLMs (GPT-4o-mini, GPT-4o, and Claude3-Opus) using our de-
fault prompts and settings. Figure 10 visualizes the eight most
recognized classes across all backbone models. For this analy-
sis, we select the top two recognized categories from each model
and display the sketches with the highest classification probabil-

Taj
Mahal

Eiffel
Tower

Great Wall
of China

Pyramids of
Giza

Statue
of Liberty

Colosseum

Sydney
Opera
House

Big
Ben

Mount
Fuji

Machu
Picchu

Figure 6. Randomly selected sketches of notable landmarks. Ten
textual concepts were randomly selected using GPT-4o. Five
sketches were generated per concept, showcasing the variability
and diversity of the outputs.

ity for each. Note that some categories were at the top two of
multiple models (such as house, fish, and eye), in that case, we
select the next top recognized category. The chosen top two cate-
gories for each model are: GPT-4o: house and eye, GPT-4o-mini:
table and goatee, Claude3-Opus: fish and airplane, Claude3.5-
Sonnet: umbrella and bus. Similarly, Figure 11 highlights the
least recognized categories, chosen using the same selection cri-
teria. The chosen worst two categories for each model are: GPT-
4o: snake and school bus, GPT-4o-mini: saxophone and raccoon,
Claude3-Opus: octopus and dolphin, Claude3.5-Sonnet: shark and
watermelon. Note that snake, octopus, and shark, were all con-
fused under at least three of the four backbones. The visualiza-
tions align well with the quantitative results presented in Table
1 of the main paper. Among the Anthropic models, Claude3.5-
Sonnet produces better sketches than Claude3-Opus, and among

3

an
t

bi
no

cu
la

rs

bu
s

ca
m

el

do
g

ey
e

fis
h

gi
ra

ffe

he
ad

ph
on

es

m
ai

lb
ox

oc
to

pu
s

on
io

n

pe
ar

po
ta

to

sc
ho

ol
 b

us

sh
ar

k

sm
ile

y
fa

ce

sn
ak

e

sp
id

er

sq
ui

gg
le

Predicted Label

ant
binoculars

bus
camel

dog
eye
fish

giraffe
headphones

mailbox
octopus

onion
pear

potato
school bus

shark
smiley face

snake
spider

squiggle

Tr
ue

 L
ab

el

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0
0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7. Confusion matrix (showing top 10 confused classes)
for the set of 500 sketches generated with SketchAgent default
settings (Claude3.5-Sonnet) across 50 categories

shark
fish

0.0%

octopus
spider

30.0%

snake
squiggle

30.0%

pear
onion

50.0%

potato
smiley face

50.0%

school bus
bus

50.0%

Figure 8. Visualization of sketches from the six most confused
classes. The correct category is highlighted in green, while the
misclassified category is highlighted in red.

fish

100.0%

house

90.0%

umbrella

90.0%

table

90.0%

television

70.0%

camera

70.0%
eye

60.0%

bus

60.0%

lighthouse

60.0%

dog

50.0%

hand

50.0%

tennis racquet

50.0%
goatee

40.0%

car

40.0%

frog

30.0%

giraffe

30.0%

hot air balloon

30.0%

airplane

20.0%

Figure 9. Visualization of the top recognized classes for the set
of 500 sketches generated with our default settings (Claude3.5-
Sonnet) across 50 categories.

the GPT models, GPT-4o outperforms GPT-4o-mini. Overall, the
two best-performing backbone models are Claude3.5-Sonnet and
GPT-4o. Interestingly, the sketching style differs between GPT-4o
and Claude3.5-Sonnet. Although Claude3.5-Sonnet (our default
backbone model) seems to yield the best results, this may be due to
the fact that our method was primarily developed using this model.
Consequently, the prompts we use were optimized for Claude3.5-
Sonnet, and improved results for other models might be achievable
with additional prompt engineering. We leave this exploration for
future work.

ho
us

e
fis

h
ey

e
ta

bl
e

go
at

ee
um

br
el

la
ai

rp
la

ne
bu

s

GPT-4o
GPT-4o

mini
Claude3

Opus
Claude3.5

Sonnet

Figure 10. Visualization of sketches from the most recognized
classes across all backbone models. The classes selected based on
the two most recognizable classes in each model.

SketchAgent using an open-source model While open-
source models currently lag behind commercial closed-source
models, they are rapidly advancing in size and capability, show-
ing significant potential for facilitating sketch generation.

We begin by experimenting with Llama-3.2-11B-Vision [3],
a multimodal large language model developed by Meta AI, as
SketchAgent’s backbone model. When used with our default
prompts and framework, the model fails to generate meaningful
sketches, frequently replicating the in-context example of a house
provided in the user prompt (examples are shown in Fig. 12).

We therefore turn into exploring a larger available open-source
model, Llama-3.1-405B-Instruct [3]. This model resulted in bet-
ter sketches that manage to generalize well beyond the in-context
example. We generated 500 random sketches and computed their
classification rates using CLIP, as described in Section 5.1 of the
main paper. The results yielded lower scores compared to com-
mercial models, with an average Top-1 recognition accuracy of
0.052± 0.03 and a Top-5 recognition accuracy of 0.1± 0.03. Vi-
sualizations of the top eight correctly classified classes are shown
in Fig. 13, and the top eight most confused classes are presented

4

sn
ak

e
sa

xo
ph

on
e

sh
ar

k
ra

cc
oo

n
oc

to
pu

s
do

lp
hi

n
wa

te
rm

el
on

sc
ho

ol
 b

us
GPT-4o

GPT-4o
mini

Claude3
Opus

Claude3.5
Sonnet

Figure 11. Visualization of sketches from the least recognized
classes across all backbone models. The classes selected based
on the two least recognizable classes in each model.

house backpack eye airplane

Figure 12. Sketches generated using Llama-3.2-11B-Vision as our
backbone models. The model frequently replicates the in-context
example of a house provided in the user prompt.

in Fig. 14. Despite the lower recognition rates, the generated
sketches are reasonable and visually coherent, showing promise as
open-source models continue to improve. This experiment demon-
strates the potential for SketchAgent to be implemented using pub-
licly available models. While its performance does not match that
of our default backbone, SketchAgent can still function effectively
with open-source models, albeit with a slight compromise in per-
formance.

house goatee eye fish

hand potato lighthouse skyscraper

Figure 13. Visualization of the eight top recognized classes for the
set of 500 sketches generated with Llama-3.1-405B-Instruct as our
backbone model.

dolphin peanut pond table

fish snake pear river

Figure 14. Visualization of sketches from the eight least recog-
nized classes for the set of 500 sketches generated with Llama-
3.1-405B-Instruct as our backbone model.

Direct Prompting Analysis In Section 5.1 of the main paper,
we compared our method to directly prompting Claude3.5-Sonnet
for generating SVGs with a sketch-like appearance. In Fig. 15, we
extend this analysis by visualizing the results of direct prompting
with the other backbone models used in the quantitative experi-
ment. This demonstrates how different models respond to direct
SVG generation prompts. We present examples for the concepts
“giraffe” and “lighthouse”, using the following SVG generation
prompt: “Write an SVG string of a <concept>.”. For sketch-like
SVGs, we used the same prompt as in the main paper (“Write an
SVG string that draws a sketch of a <concept>. Use only black
and white colors”). As shown, the outputs across all methods of-
ten feature uniform and precise geometric shapes (e.g., ellipses,
triangles), which diverge from the natural variability and expres-
siveness characteristic of hand-drawn sketches. Interestingly, the
SVGs generated by GPT-4o and Claude3.5-Sonnet appear more
expressive and visually appealing compared to those produced by
GPT-4o-mini and Claude3-Opus, aligning well with the perfor-
mance differences observed in sketch generation.

5

2AFC experiment In section 5.1 of the main paper, we also
presented a 2AFC experiment to evaluate how “human-like” our
agent’s sketches appear compared to sketch-like SVGs generated
with direct prompting and human sketches from the QuickDraw
dataset. We utilize 50 sketches from 50 classes per method. We
recruited a total of 150 workers through Amazon Mechanical Turk,
each participating in 50 test sessions, as presented in Fig. 16.
Before starting the test, workers were presented with instructions
(Fig. 17). We filtered participants with a Mturk approval rate of
99.9% or higher and with a record of more than 1,000 surveys.
Workers were paid $0.5 for completing the full test.

GPT-4o
GPT-4o
-mini

Claude3
Opus

Claude3.5
-Sonnet

SVG
“giraffe”

Sketch-like
SVG

“giraffe”

SVG
“lighthouse”

Sketch-like
SVG

“lighthouse”

Figure 15. Direct prompting for SVG generation across dif-
ferent backbone models. The SVGs generated by GPT-4o and
Claude3.5-Sonnet appear more expressive and visually appealing
compared to those produced by GPT-4o-mini and Claude3-Opus,
aligning well with the performance differences observed in sketch
generation.

Figure 16. An example of our 2AFC session.

Figure 17. 2AFC instructions to users.

6

4 strokes 7 strokes

15 strokes

1 stroke

Human

4 strokes
7 strokes

15 strokes
SketchAgent

Figure 18. Distribution of human sketches [7] (top) and SketchA-
gent’s sketches (bottom) based on the number of strokes per
sketch. Representative examples are shown for sketches drawn
with 1, 4, 7, and 15 strokes. Notably, in the QuickDraw dataset,
single-stroke sketches often consist of a single long continuous
line.

2.2. Sequential sketching

In Section 5.2 of the main paper, we analyze the sequential nature
of our generated sketches. In Figs. 23 to 25, we present addi-
tional visualizations of annotated sequential sketches of 48 ran-
domly selected animals, with the presented sketches also chosen
randomly. As illustrated, due to the extensive prior knowledge
of the backbone model, SketchAgent provides meaningful textual
annotations for each stroke and sketches in a logical order. Typi-
cally, more significant body parts, such as the head and body, are
drawn first. We next provide more details and visualizations of the
quantitative analysis shown in Figure 11 of the main paper. Fig-
ure 18 displays histograms of the number of strokes in QuickDraw
sketches (top) and our generated sketches (bottom), as shown in
the main paper. Alongside these histograms, we include visualiza-
tions of sketches drawn with 1, 4, 7, and 15 strokes. Notably, in the
QuickDraw dataset, single-stroke sketches often consist of a sin-
gle long continuous line, making them recognizable after the first
stroke. In contrast, sketches with a larger number of strokes rarely
feature long continuous lines. For such cases, the sequential pro-
cess of adding strokes gradually makes the sketches recognizable

after several strokes. Figures 19 to 22 also demonstrates the se-
quential sketching process for both QuickDraw sketches and those
generated by our method, providing a visual context for the trends
observed in Figure 11.

H
um

an
O

ur
s

H
um

an
O

ur
s

H
um

an
O

ur
s

Figure 19. Sequential four-stroke sketches of a pear, purse, and
screwdriver, created by humans [7] and by SketchAgent.

H
um

an
O

ur
s

H
um

an
O

ur
s

H
um

an
O

ur
s

Figure 20. Sequential five-stroke sketches of a pear, purse, and
screwdriver, created by humans [7] and by SketchAgent.

7

H
um

an
O

ur
s

H
um

an
O

ur
s

H
um

an
O

ur
s

Figure 21. Sequential six-stroke sketches of a television, bed, and
peanut, created by humans [7] and by SketchAgent.

H
um

an
O

ur
s

H
um

an
O

ur
s

H
um

an
O

ur
s

Figure 22. Sequential seven-stroke sketches of a backpack, fish,
and house, created by humans [7] and by SketchAgent.

8

Figure 239

Figure 24

10

Figure 25

11

2.3. Human-Agent Collaborative Sketching

In Section 5.3 of the main paper, we demonstrate that humans
and SketchAgent can effectively collaborate to produce meaning-
ful sketches through genuine interaction. The sketching interface
(Fig. 26) consists of a 400 × 400 plain canvas shared between
the user and the agent. It highlights the current concept to be
sketched and displays the active sketching mode, which can be
either solo or collab. Additionally, the interface includes a submit
button that allows users to finalize the sketch when they consider
it complete. In solo mode, users independently sketch the given
concept using green strokes. In collab mode, users and SketchA-
gent take turns adding strokes, with user strokes displayed in green
and agent strokes in pink. At the beginning of each session, users
are provided with general instructions about the experiment and
the types of sketches they will be asked to draw (Fig. 27). Specif-
ically, they are instructed to create recognizable sketches, stroke
by stroke, while minimizing the number of strokes by planning
ahead. Next, users begin by sketching two warm-up concepts in
both “solo” and “collab” modes to familiarize themselves with the
web environment. Each session includes all eight primary con-
cepts in a randomized order, resulting in a total of 10 sketches per
user (including the two warm-up sketches). The concepts are as
follows:

• Warm up concepts: jellyfish, house
• Text concepts: butterfly, fish, rabbit, duck, sailboat, coffee mug,

eyeglasses, car

For each concept, participants sketched in both solo and col-
laboration modes, with the order of these modes randomized to
mitigate potential biases. The 30 users are counterbalanced: 15
users produced the first stroke in collaboration with the agent (and
all odd-numbered strokes thereafter), while the other 15 users pro-
duced the second stroke in collaboration with the agent (and all
even-numbered strokes). In total we collected responses from 32
users, however, two users were excluded from the analysis due
to incomplete sketching sessions, leaving a total of 30 users. In
Fig. 32 we present examples of sketches from each mode, focus-
ing on those with high recognition rates across categories. Solo
sketches are shown in green, agent-only sketches in pink, and col-
laborative sketches are depicted with a combination of both colors.
To analyze “collab” and “solo” sketches, we rendered all com-
plete and partial sketches (agent-only and user-only strokes) from
SVG to pixel images. We then utilized a CLIP zero-shot classi-
fier, as described in the main paper, to evaluate how effectively
each sketch represented the intended concept. Tab. 1 summarizes
the results (as shown in the graph in Fig. 12B of the main paper).
These results highlight that both users and the agent contributed
meaningfully to the final “collab” sketches. Variants of collabora-
tive sketches containing only the user’s strokes or only the agent’s
strokes were found to contain substantially less semantic informa-
tion about the intended concept compared to the complete collab-
orative sketches. Additionally, the average number of strokes per
completed sketch was consistent across modes, indicating similar
levels of complexity. Specifically, the average stroke counts were
as follows: collaborative full sketches: 7.333; solo agent sketches:
7.321; solo user sketches: 7.708. This suggests that collaboration
produces sketches with a level of detail comparable to those cre-
ated independently.

Let’s Sketch a Sailboat

User Turn!
Draw a stroke

Figure 26. Screenshot of our web interface.

Figure 27. User instructions in the sketching interface.

We analyze the classification confusion patterns for collabo-
rative and solo sketches (240 sketches each) in Figs. 29 and 30,
revealing similar trends. For instance, a “coffee cup” was often
misclassified as a “teapot”, a “car” was frequently identified as
a “turtle”, and a “duck” was misclassified as a “bird”. Addition-
ally, “car” sketches were sometimes mistaken for a “pickup truck”.
In most cases, the misclassifications occur within closely related
categories (e.g., “car” to “truck” or “pickup truck”) or among cat-
egories sharing similar visual structures (e.g., the rounded dome
and four base components of a “car” resembling a “turtle”). This
highlights a challenge in emphasizing distinctive features within
specific categories, likely stemming from the inherently abstract
nature of our sketches.

Figure 28 presents the recognition rates with 95% confidence
interval (CI) error bars for each concept across all three sketching
conditions: “collab” (blue), “solo-user” (green), and “solo-agent”
(pink). Overall, the recognition rates for collaborative sketches are
comparable to those produced by users alone or the agent alone
for each unique category. Notably, sketches of “car” exhibit the
lowest recognition rate across all conditions. This is likely due
to confusion with semantically similar categories, such as “truck”,
“pickup truck”, “airplane”, and “speedboat”, as indicated by the

12

Variation Recognition Rate 95% CI
Collab full sketch 0.75 [0.61, 0.85]
Collab agent-only strokes 0.10 [0.06, 0.19]
Collab user-only strokes 0.13 [0.07, 0.23]

Table 1. Recognition rate and 95% CI across collaborative full
and partial sketches. In collaborative sketches, keeping agent-only
strokes or user-only strokes significantly reduces recognizability.

collab full solo user full solo agent full

0.0

0.2

0.4

0.6

0.8

1.0

butterfly car coffee mug duck eyeglasses fish rabbit sailboat

re
co

gn
iti

on
 ra

te

Figure 28. CLIP recognition rate by class for collaborative, solo
user, and solo agent full sketches.

confusion matrices. Similarly, as discussed earlier, “coffee cup”
and “duck” are frequently misclassified as related categories with
overlapping visual features.

We observe that in some cases of collaborative sketching (14
out of 240 sketches), the agent-human pair faces challenges in
interpreting each other’s intentions and the meanings of strokes.
Achieving effective collaboration and communication between
different parties [5] is a challenge that often requires prior plan-
ning, social reasoning, and repeated interactions to establish
shared intentions and representations. These complex processes
continue to be studied across various contexts, including in inter-
actions between humans [6, 8, 10], between humans and agents
[2], and between agents [11]. Fig. 31 highlights the few collabora-
tive sketches where the CLIP classification is correct, but the agent
and user appear to lack a shared understanding of different stroke
groups, resulting in the conflicting creation of duplicate concept
components (i.e. two heads).

2.4. Chat-Based Editing
In section 5.4 of the main paper we demonstrate chat-based edit-
ing using SketchAgent. Below, we provide more details about the
implementation of the experiment we performed. To enable chat
editing, we use the following prompt: “<editing instruction>.
Describe the location of the added concepts first in <thinking>
tags. Only provide the added strokes. Respond in the same format
as before. Be concise.”, where <editing instruction> contains the
desired edit such as “Add glasses to the given cat”. The chosen
objects per category, as well as the editing prompts, are provided:
• Animals: fish, bird, cat. Editing instruction: “Add glasses”,

“Add a hat”, “Add a skirt”.

bu
tte

rfl
y

ca
r

co
ffe

e
cu

p
du

ck
ey

eg
la

ss
es fis
h

ra
bb

it
sa

ilb
oa

t
be

e
bi

rd
ca

m
el

co
ffe

e
m

ug
do

lp
hi

n
fin

ge
r

m
ou

se
pi

an
o

se
a

tu
rtl

e
sp

ee
db

oa
t

sq
ui

gg
le

te
ap

ot
un

de
rw

ea
r

Predicted Label

butterfly
car

coffee cup
duck

eyeglasses
fish

rabbit
sailboat

bee
bird

camel
coffee mug

dolphin
finger

mouse
piano

sea turtle
speedboat

squiggle
teapot

underwear

Tr
ue

 L
ab

el

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 0 0 0
0 0
0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 9 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Figure 29. Confusion matrix from CLIP classification with cate-
gories from the QuickDraw dataset for 240 collaborative sketches
across 8 categories.

bu
tte

rfl
y

ca
r

du
ck

ey
eg

la
ss

es fis
h

ra
bb

it
sa

ilb
oa

t
bi

rd
co

ffe
e

m
ug

go
at

ee
go

lf
clu

b
m

ou
se

oc
ea

n
pe

ng
ui

n
pi

ck
up

 tr
uc

k
sh

ar
k

sq
ua

re
sq

ui
gg

le
te

ap
ot

tru
ck

Predicted Label

butterfly
car

duck
eyeglasses

fish
rabbit

sailboat
bird

coffee mug
goatee

golf club
mouse
ocean

penguin
pickup truck

shark
square

squiggle
teapot

truck

Tr
ue

 L
ab

el

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 3
0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30. Confusion matrix from CLIP classification with cat-
egories from the QuickDraw dataset for 240 solo user sketches
across 8 categories.

• Outdoor: bus, building, boat. Editing instruction: “Add a tree
to the left of the <concept>”, “Add a sun on the top right, above
the <concept>”, “Add another smaller <concept> to the right
of this <concept>”.

• Indoor: shelf, nightstand, table. Editing instruction: “Add a
coffee mug on the top of the <concept>”, “Add a lamp on the
top of the <concept>”, “Add an indoor plant to the left of the
<concept>”.

The resulting edited sketches are shown in Figure 33.

13

duckrabbit duckrabbit

Figure 31. Examples of sketches created in “collab” mode that
were correctly classified by CLIP but considered unsuccessful as
collaborations due to conflicting agent-user interpretations of sub-
components.

eyeglasses

solo agent collabsolo user

duck

sailboat

butterfly

rabbit

coffee mug

car

fish

Figure 32. Examples of sketches from our collaborative human
study that received high recognition rates. From left to right are
sketches drawn in “solo” mode by users, “solo” mode by the agent,
and collaboratively by both.

“Tree to the left”
“Sun on top right”

“Smaller <concept>”
“to the right”

“Coffee mug on top”
“Lamp on top”

“Plant to the left”

“Add glasses”
“Add a hat”

“Add a skirt”

“Building” “Nightstand” “Cat”

“Boat” “Shelf” “Bird”

“Bus” “Table” “Fish”

Figure 33. Chat-based sketch editing. We iteratively prompt
SketchAgent to add objects to sketches through chat dialogues.

14

3. Ablation Study
In Section 6 of the main paper, we presented an ablation study by
systematically removing key components of our method and com-
puting the resulting classification rates. Here, we provide further
analyses and discussions on the ablation study.

Table 2 in the main paper shows the CLIP classification rates
for 500 sketches (across 50 categories) per experiment. In Fig. 34
we include a visualization of six sketches from six different con-
cepts, covering both structures and animals. As shown, incorpo-
rating chain-of-thought reasoning and our in-context example of a
house significantly enhances the quality of the results.

w/o System
Prompt

tiger frog dog hospital lighthouse skyscraper

w/o CoT

Modified
ICL

SketchAgent
(Full)

Figure 34. Visualization of sketches produced in different cases of
our ablation study.

We find that the examples used in in-context learning (ICL)
can influence both the quality and appearance of the generated
sketches, suggesting an interesting direction for future research.
Here, we analyze the impact of different types of in-context exam-
ples. To investigate whether the theme of the in-context example
affects the output (e.g., whether using a house example aids in
sketching related concepts like a hospital or if using a cat example
helps with sketching other animals), we constructed an alternative
sketch of a cat. This sketch used the same number of strokes as the
house example to isolate the effect of the theme from complexity.
We then applied our method using this alternative example in ICL.
In Fig. 35 we illustrate the influence of different ICL examples on
related concepts. The example used in each experiment is shown
on the left, with the top figure presenting the effect on animal con-
cepts and the bottom figure depicting the effect on structures. The
results indicate that animal sketches are generally more influenced
by an animal-based in-context example. For instance, the eyes in
the generated sketches tend to resemble the eyes of the cat ex-
ample more closely, while they vary more when a house example
is used. However, there is no definitive conclusion regarding the
overall quality or recognizability of these results. Conversely, for
structures (bottom), the use of the cat example seems to result in
smoother and more rounded shapes, while sketches generated us-
ing the house example generally appear more refined and cohesive.

We also examine the impact of example complexity, specif-
ically how using a more detailed sketch with additional strokes
affects the output. To test this, we enhanced the cat example by

ICL example cat tiger frog dog bear

ICL example house church lighthouse hospital skyscraper

Figure 35. ICL example ablation study. We examine the impact
of changing the concept in the ICL example (e.g., from a house to
a cat) on the generation of related concepts. The example used in
each experiment is shown on the left, with the top figure illustrat-
ing the effect on animal concepts and the bottom figure showing
the effect on structural concepts.

adding more details and then applied our method with the new,
more complex example. The results are presented in Fig. 36.
As shown, when a more detailed example is used, the generated
sketches tend to overfit, closely replicating the original cat sketch.
In contrast, using a simpler example leads to greater variation in
the output.

ICL example cat tiger frog dog bear

ICL example house church lighthouse hospital skyscraper

Figure 36. ICL example ablation study. We examine the impact of
varying the complexity of the sketch presented in the ICL example
while keeping the semantic concept (a cat) constant. The example
used in each experiment is shown on the left, with the top figure
illustrating the effect on animal concepts and the bottom figure
showing the effect on structural concepts.

15

4. Prompts and More Results
We present the full prompts used in our system, as well as our ran-
domly generated sketches used for the quantitative evaluation pre-
sented in Section 5.1 of the main paper, and the full set of sketches
made by users and in collaborative mode from our human study.

References
[1] Anthropic. Claude. https://www.anthropic.com/

claude, 2023. 1
[2] Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, San-

jit Seshia, Pieter Abbeel, and Anca Dragan. On the util-
ity of learning about humans for human-ai coordination. In
Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2019. 13

[3] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024. 4

[4] Hugging Face. clip-vit-large-patch14. https://
huggingface.co/openai/clip- vit- large-
patch14. 1

[5] Barbara J. Grosz and Sarit Kraus. Collaborative plans for
complex group action. Artificial Intelligence, 86(2):269–
357, 1996. 13

[6] Robert D. Hawkins, Megumi Sano, Noah D. Goodman, and
Judith E. Fan. Visual resemblance and communicative con-
text constrain the emergence of graphical conventions, 2021.
13

[7] Jongejan Jonas, Rowley Henry, Kawashima Takashi, Kim
Jongmin, and Fox-Gieg Nick. The Quick, Draw! - A.I. Ex-
periment, 2016. 2, 7, 8

[8] Günther Knoblich, Stephen Butterfill, and Natalie Sebanz.
Chapter three - psychological research on joint action: The-
ory and data. In Advances in Research and Theory, pages
59–101. Academic Press, 2011. 13

[9] Kozea. Cairosvg. https://cairosvg.org/, 2023. 1
[10] William P. McCarthy, Robert D. Hawkins, Haoliang Wang,

Cameron Holdaway, and Judith E. Fan. Learning to commu-
nicate about shared procedural abstractions, 2021. 13

[11] Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosen-
schein. Ad hoc autonomous agent teams: Collaboration
without pre-coordination. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 24(1):1504–1509, 2010. 13

16

https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/openai/clip-vit-large-patch14
https://cairosvg.org/

You are an expert artist specializing in drawing sketches that are visually appealing, expressive, and professional.
You will be provided with a blank grid. Your task is to specify where to place strokes on the grid to create a visually appealing
sketch of the given textual concept. The grid uses numbers (1 to res) along the bottom (x axis) and numbers (1 to res) along
the left edge (y axis) to reference specific locations within the grid. Each cell is uniquely identified by a combination of the
corresponding x axis numbers and y axis number (e.g., the bottom-left cell is ’x1y1’, the cell to its right is ’x2y1’). You can
draw on this grid by specifying where to draw strokes. You can draw multiple strokes to depict the whole object, where different
strokes compose different parts of the object.
To draw a stroke on the grid, you need to specify the following:
Starting Point: Specify the starting point by giving the grid location (e.g., ’x1y1’ for column 1, row 1).
Ending Point: Specify the ending point in the same way (e.g., ’xresyres’ for column res, row res).
Intermediate Points: Specify at least two intermediate points that the stroke should pass through. List these in the order the stroke
should follow, using the same grid location format (e.g., ’x6y5’, ’x13y10’ for points at column 6 row 5 and column 13 row 10).
Parameter Values (t): For each point (including the start and end points), specify a t value between 0 and 1 that defines the position
along the stroke’s path. t=0 for the starting point. t=1 for the ending point.
Intermediate points should have t values between 0 and 1 (e.g., ”0.3 for x6y5, 0.7 for x13y10”).
Examples:
To draw a smooth curve that starts at x8y6, passes through x6y7 and x6y10, ending at x8y11:
Points = [’x8y6’, ’x6y7’, ’x6y10’, ’x8y11’] t values = [0.00,0.30,0.80,1.00]
To close this curve into an ellipse shape, you can add another curve:
Points = [’x8y11’, ’x11y10’, ’x11y7’, ’x8y6’] t values = [0.00,0.30,0.70,1.00]
To draw a large circle that starts at x25y44 and ends at x25y44, passing through the cells x32y41, x35y35, x31y29, x25y27,
x19y29, x15y35, x18y41: Points = [’x25y44’, ’x32y41’, ’x35y35’, ’x31y29’, ’x25y27’, ’x19y29’, ’x15y35’, ’x18y41’, ’x25y44’]
t values = [0.00, 0.125, 0.25, 0.375, 0.50, 0.625, 0.75, 0.875, 1.00]
To draw non-smooth shapes (with corners) like triangles or rectangles, you need to specify the corner points twice with adjacent
corresponding t values. For example, to draw an upside-down ”V” shape that starts at x13y27, ends at x24y27, with a pick
(corner) at x18y37: Points = [’x13y27’, ’x18y37’,’x18y37’, ’x24y27’] t values = [0.00,0.55,0.5,1.00]
To draw a triangle with corners at x10y29, x15y33, and x9y35, start with drawing a ”V” shape that starts at x10y29, ends at
x9y35, with a pick (corner) at x15y33:
Points = [’x10y29’, ’x15y33’, ’x15y33’, ’x9y35’] t values = [0.00,0.55,0.5,1.00]
and then close it with a straight line from x13y27 to x24y27 to form a triangle:
Points = [’x13y27’, ’x24y27’] t values = [0.00,1.00]
Note that for a triangle, the start and end points should be different from each other.
To draw a rectangle with four corners at x13y27, x24y27, x24y11, x13y11:
Points = [’x13y27’, ’x24y27’, ’x24y27’, ’x24y11’, ’x24y11’, ’x13y11’, ’x13y11’, ’x13y27’] t values =
[0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00]
To draw a small square with four corners at x26y25, x29y25, x29y21, x26y21:
Points = [’x26y25’, ’x29y25’, ’x29y25’, ’x29y21’, ’x29y21’, ’x26y21’, ’x26y21’, ’x26y25’] t values =
[0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00]
To draw a single dot at x15y31 use: Points = [’x15y31’] t values = [0.00]
To draw a straight linear line that starts at x18y31 and ends at x35y14 use: Points = [’x18y31’, ’x35y14’] t values = [0.00, 1.00].
If you want to draw a big and long stroke, split it into multiple small curves that connect to each other. These instructions will
define a smooth stroke that follows a Bezier curve from the starting point to the ending point, passing through the specified
intermediate points. To draw a visually appealing sketch of the given object or concept, break down complex drawings into
manageable steps. Begin with the most important part of the object, then observe your progress and add additional elements as
needed. Continuously refine your sketch by starting with a basic structure and gradually adding complexity. Think step-by-step.

Figure 37. System prompt.

17

I provide you with a blank grid. Your goal is to produce a visually appealing sketch of a {concept}.
Here are a few examples:
<examples>
{gt-sketches}
</examples>

You need to provide x-y coordinates that construct a recognizable sketch of a concept.
You will receive feedback on your sketch and you will be able to adjust and fix it. Note that you will not have access to any
additional resources. Do not copy previous sketches.

Think before you provide the x-y coordinates in <thinking> tags.
First, think through what parts of the concept you want to sketch and the sketching order.
Then, think about where the parts should be located on the grid.
Finally, provide your response in <answer> tags, using your analysis.

Provide the sketch in the following format with the following fields:
<formatting>
<concept>The concept depicted in the sketch.</concept>
<strokes>This element holds a collection of individual stroke elements that define the sketch.
Each stroke is uniquely identified by its own tag (e.g., <s1>, <s2>, etc.).
Within each stroke element, there are three key pieces of information:
<points>A list of x-y coordinates defining the curve. These points define the path the stroke follows.</points>
<t values>A series of numerical timing values that correspond to the points. These values define the progression of the stroke
over time, ranging from 0 to 1, indicating the order or speed at which the stroke is drawn.</t values>
<id>A short descriptive identifier for the stroke, explaining which part of the sketch it corresponds to.</id>
</strokes>
</formatting>

Figure 38. User prompt. This prompt contains the specific sketching task as well as details about the expected format.

18

<example>
To draw a house, start by drawing the front of the house:
<concept>House</concept>
<strokes>

<s1>
<points>’x13y27’, ’x24y27’, ’x24y27’, ’x24y11’, ’x24y11’, ’x13y11’, ’x13y11’, ’x13y27’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>house base front rectangle</id>

</s1>
<s2>

<points>’x13y27’, ’x18y37’,’x18y37’, ’x24y27’</points>
<t values>0.00,0.55,0.5,1.00</t values>
<id>roof front triangle</id>

</s2>
</strokes>

Next we add the house’s right section:
<concept>House</concept>
<strokes>

<s1>
<points>’x13y27’, ’x24y27’, ’x24y27’, ’x24y11’, ’x24y11’, ’x13y11’, ’x13y11’, ’x13y27’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>house base front rectangle</id>

</s1>
<s2>

<points>’x13y27’, ’x18y37’,’x18y37’, ’x24y27’</points>
<t values>0.00,0.55,0.5,1.00</t values>
<id>roof front triangle</id>

</s2>
<s3>

<points>’x24y27’, ’x36y28’, ’x36y28’, ’x36y21’, ’x36y21’, ’x36y12’, ’x36y12’, ’x24y11’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>house base right section</id>

</s3>
<s4>

<points>’x18y37’, ’x30y38’, ’x30y38’, ’x36y28’</points>
<t values>0.00,0.55,0.5,1.00</t values>
<id>roof right section</id>

</s4>
</strokes>

Now that we have the general structure of the house, we can add details to it, like windows and a door:
<concept>House</concept>
<strokes>

<s1>
<points>’x13y27’, ’x24y27’, ’x24y27’, ’x24y11’, ’x24y11’, ’x13y11’, ’x13y11’, ’x13y27’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>house base front rectangle</id>

</s1>
<s2>

<points>’x13y27’, ’x18y37’,’x18y37’, ’x24y27’</points>
<t values>0.00,0.55,0.5,1.00</t values>
<id>roof front triangle</id>

</s2>

Figure 39. ICL example. This is the example of a sketch of a house we provide to the model.

19

<s3>
<points>’x24y27’, ’x36y28’, ’x36y28’, ’x36y21’, ’x36y21’, ’x36y12’, ’x36y12’, ’x24y11’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>house base right section</id>

</s3>
<s4>

<points>’x18y37’, ’x30y38’, ’x30y38’, ’x36y28’</points>
<t values>0.00,0.55,0.5,1.00</t values>
<id>roof right section</id>

</s4>
<s5>

<points>’x26y25’, ’x29y25’, ’x29y25’, ’x29y21’, ’x29y21’, ’x26y21’, ’x26y21’, ’x26y25’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>left window square</id>

</s5>
<s6>

<points>’x31y25’, ’x34y25’, ’x34y25’, ’x34y21’, ’x34y21’, ’x31y21’, ’x31y21’,’x31y25’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>right window square</id>

</s6>
<s7>

<points>’x17y11’, ’x17y18’, ’x17y18’, ’x21y18’, ’x21y18’, ’x21y11’, ’x21y11’, ’x17y11’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>front door</id>

</s7>
</strokes>
and here is the complete example:
<concept>House</concept>
<strokes>

<s1>
<points>’x13y27’, ’x24y27’, ’x24y27’, ’x24y11’, ’x24y11’, ’x13y11’, ’x13y11’, ’x13y27’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>house base front rectangle</id>

</s1>
<s2>

<points>’x24y27’, ’x36y28’, ’x36y28’, ’x36y21’, ’x36y21’, ’x36y12’, ’x36y12’, ’x24y11’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>house base right section</id>

</s2>
<s3>

<points>’x13y27’, ’x18y37’,’x18y37’, ’x24y27’</points>
<t values>0.00,0.55,0.5,1.00</t values>
<id>roof front triangle</id>

</s3>
<s4>

<points>’x18y37’, ’x30y38’, ’x30y38’, ’x36y28’</points>
<t values>0.00,0.55,0.5,1.00</t values>
<id>roof right section</id>

</s4>

Figure 40. ICL example. This is the example of a sketch of a house we provide to the model.

20

<s5>
<points>’x26y25’, ’x29y25’, ’x29y25’, ’x29y21’, ’x29y21’, ’x26y21’, ’x26y21’, ’x26y25’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>left window square</id>

</s5>
<s6>

<points>’x31y25’, ’x34y25’, ’x34y25’, ’x34y21’, ’x34y21’, ’x31y21’, ’x31y21’,’x31y25’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>right window square</id>

</s6>
<s7>

<points>’x17y11’, ’x17y18’, ’x17y18’, ’x21y18’, ’x21y18’, ’x21y11’, ’x21y11’, ’x17y11’</points>
<t values>0.00,0.3,0.25,0.5,0.5,0.75,0.75,1.00</t values>
<id>front door</id>

</s7>
</strokes>
</example>

Figure 41. ICL example. This is the example of a sketch of a house we provide to the model.

21

m
os

qu
ito

sh
ar

k
tig

er
fis

h
ra

cc
oo

n
oc

to
pu

s
do

g
fro

g
sn

ak
e

do
lp

hi
n

gi
ra

ffe
ha

nd
ey

e
go

at
ee

po
ps

icl
e

ca
ke

pe
ar

wa
te

rm
el

on
pe

an
ut

po
ta

to
ho

t a
ir

ba
llo

on
sc

ho
ol

 b
us

ai
rp

la
ne

ca
r

ca
no

e
bu

s
riv

er
ga

rd
en

po
nd

lig
ht

ho
us

e
ho

sp
ita

l
ho

us
e

sk
ys

cr
ap

er
ba

se
ba

ll
te

nn
is

ra
cq

ue
t

sc
re

wd
riv

er
dr

ill
sc

iss
or

s
gu

ita
r

sa
xo

ph
on

e
um

br
el

la
ta

bl
e

be
d

te
le

vi
sio

n
ba

ck
pa

ck
m

ai
lb

ox
ca

m
er

a
te

le
ph

on
e

m
ar

ke
r

pu
rs

e

Figure 42. Randomly generated sketches used in the quantitative analysis (ten sketches per category).

22

m
os

qu
ito

sh
ar

k
tig

er
fis

h
ra

cc
oo

n
oc

to
pu

s
do

g
fro

g
sn

ak
e

do
lp

hi
n

gi
ra

ffe
ha

nd
ey

e
go

at
ee

po
ps

icl
e

ca
ke

pe
ar

wa
te

rm
el

on
pe

an
ut

po
ta

to
ho

t a
ir

ba
llo

on
sc

ho
ol

 b
us

ai
rp

la
ne

ca
r

ca
no

e
bu

s
riv

er
ga

rd
en

po
nd

lig
ht

ho
us

e
ho

sp
ita

l
ho

us
e

sk
ys

cr
ap

er
ba

se
ba

ll
te

nn
is

ra
cq

ue
t

sc
re

wd
riv

er
dr

ill
sc

iss
or

s
gu

ita
r

sa
xo

ph
on

e
um

br
el

la
ta

bl
e

be
d

te
le

vi
sio

n
ba

ck
pa

ck
m

ai
lb

ox
ca

m
er

a
te

le
ph

on
e

m
ar

ke
r

pu
rs

e

Figure 43. Randomly generated sketches used in the quantitative analysis (ten sketches per category).

23

sailboat

coffee mug

glasses

car

Figure 44. Sketches generated by SketchAgent for the eight categories of our human-agent collaborative study.

24

butterfly

fish

rabbit

duck

Figure 45. Sketches generated by SketchAgent for the eight categories of our human-agent collaborative study.

25

Figure 46. Sketches created collaboratively by users and SketchAgent as part of our collaborative human study.

26

Figure 47. Sketches created collaboratively by users and SketchAgent as part of our collaborative human study.

27

Figure 48. Sketches created by users in “solo” mode as part of our collaborative human study.

28

Figure 49. Sketches created by users in “solo” mode as part of our collaborative human study.

29

	. Technical Details
	. More Results and Analysis
	. Quantitative Text-Conditioned Analysis
	. Sequential sketching
	. Human-Agent Collaborative Sketching
	. Chat-Based Editing

	. Ablation Study
	. Prompts and More Results

