VideoGEM: Training-free Action Grounding in Videos

Supplementary Material

The supplementary material is organized as follows:
first, we show a comparison between GEM and our pro-
posed weighting mechanism in Section 7. Then, we extend
our evaluation to include the BLIP backbone [12] in Sec-
tion 8. Next, we present additional experiments on extend-
ing image models to video data in Section 9 and offer a
more detailed analysis of the effects of static weights, dy-
namic weights, and their combination in Section 10, and
finally, we provide qualitative evaluation in Section 14.

7. Weighted GEM vs. GEM

VideoGEM contains two new concepts that we introduced
in the main paper: prompt decomposition and a weighting
mechanism for GEM. While prompt decomposition has al-
ready been illustrated in Figures 1 and 2, we also want to
focus on the difference between GEM and our proposed
weighting mechanism for GEM (weighted GEM) in Fig-
ure 5. The proposed weighting mechanism is illustrated on
the left. Static weights and dynamic weights can be applied
independent of each other. While static weights can be set
heuristically or via hyperparameter search based on the gen-
eral pipeline performance, dynamic weights are adapting to
the importance of the different transformer layers individ-
ually and with respect to each prompt as described in Sec-
tion 3.3. Standard GEM does not use any weights, which
equals to always using 1—weights in our formulation. This
results in one weight for the initial self attention output that
is the first input into GEM as well as one weight for the
output of each self-self attention block. A layer output is
multiplied by its corresponding weight, producing the final
output as the sum of weighted outputs.

8. Additional backbone

We extend the evaluation of our VideoGEM to another
backbone. Namely, we consider the image-text BLIP
[12] model finctuned on the instructional video-text How-
ToCaption dataset [25] (Table 6). The HowToCaption
dataset is based on the HowTo100M [20] dataset and pro-
vides captions for instructional videos. We apply both,
the original GEM as well as the proposed VideoGEM to
this backbone and evaluate it on on the V-HICO (VH),
Daly, YouCook-Interactions (YC), and Grounding YouTube
(gYT) datasets. Table 6 shows that also with BLIP as
a backbone, VideoGEM outperforms GEM by more than
10% on average, outperforming GEM individually on each
dataset. Since our proposed prompt decomposition method
relies on good predictions for the individual verb, object,
and action prompts we assume that the proposed method

Setting VH Daly YC gYT | avg
GEM 67.79 69.00 34.77 37.97| 52.38
VideoGEM | 77.20 72.04 51.57 53.83| 63.66

Table 6. Experimental evaluation using the BLIP backbone
fine-tuned on the video-text HowToCaption dataset. We report
the model’s performance on the V-HICO (VH), Daly, YouCook-
Interactions (YC), and GroundingYouTube (gYT) datasets.

Model Set Datal VH Daly YC gYT || avg
base img | 68.28 74.05 56.87 32.91| 58.03

OpenCLIP yid 65.20 70.68 48.67 28.15| 53.18
ours M8 76.42 80.32 60.05 45.33|| 65.53

vid | 7426 76.55 52.93 42.10(| 61.46

base img | 67.79 78.52 50.08 36.92|| 58.33

CLIP yid 67.55 76.31 46.10 34.82|| 56.20
ours M8 76.90 84.53 52.57 47.46| 65.37

vid | 75.15 82.68 50.36 45.79|| 63.50

Table 7. Experimental evaluation of extending image-text
backbones to video input. CLIP and OpenCLIP are extended
to video input in a training-free manner. Their accuracy with im-
age and video data as input is compared for VideoGEM (ours)
and standard GEM (base) on the V-HICO (VH), Daly, YouCook-
Interactions (YC), and GroundingYouTube (gYT) datasets.

benefits more from a finetuned backbone with improved in-
dividual predictions via prompt decompostion than the orig-
inal GEM . Moreover, Tables 8 to 10 show that BLIP also
largely benefits from dynamic and static weights.

9. Video input for image-language models

Since image-language models, such as CLIP and Open-
CLIP, are limited to processing single images as input,
we conduct additional experiments where we extend these
models to handle video input.

Setup. Let F' = {f1,..., fr} be a video with T" frames.
For an input frame f;, the first layer [y of a backbone en-
codes the input image into N patch tokens, before they are
jointly processed through the transformer layers. In order
to utilize video data we apply the first layer [y individually
to all frames f;, 1 <4 < T resulting in 7"« N patch tokens.
Since the transformer layers are independent of the num-
ber of patch tokens, the 7"« N patch tokens are processed
by the transformer layers without any architectural change.
For a given input sequence, the patch tokens from all frames
are concatenated into a single sequence X € R(T*N)xd,
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Figure 5. Comparison of GEM and our proposed weighting mechanism. The proposed weighting mechanism is illustrated on the
left. Static weights and dynamic weights can be applied independent of each other. While static weights can be set heuristically or
via hyperparameter search based on the general pipeline perfromance, dynamic weights are adapting to the importance of the different
transformer layers individually and with respect to each prompt as described in Section 3.3. Standard GEM does not use any weights,

which equals to always using 1—weights in our formulation.

where d is the embedding dimension and further processed
by GEM as described in Section 3.2.

Results. We evaluate the performance of GEM and
VideoGEM with CLIP and OpenCLIP as backbones for
video input with T = 8 frames compared to image input
in Table 7. The frame sampling for video input is the same
as for ViCLIP in previous experiments according to Sec-
tion 4.2. Independent of the backbone or the setting (GEM,
or VideoGEM) video input decreases the accuracy com-
pared to image input. We attribute this to the fact, that the
backbones are not trained to handle video input and there-
fore are not capable of utilizing the spatial and temporal
relationships that are inserted into the input data by using
videos, but are distorted by the different input instead. This
assumption is supported by the results for ViCLIP in Ta-
ble 5. ViCLIP has a similar architecture to CLIP besides
its first embedding layer which embeds a video input into
patch tokens. ViCLIP is specifically trained with video in-
put and its accuracy benefits from using videos as input as
shown in Table 5, suggesting that video-specific pretraining
is needed to leverage the spatial and temporal relationships
in videos.

10. Ablation for static and dynamic weights

In this section, we extend our analysis of the effects of
static, dynamic, and combined weights (elaborating on the

experimental evaluation in Section 4.4). We investigate
their effects separately for verb prompts (Table 8), object
prompts (Table 9), and action prompts (Table 10). Note,
that compared to Table 2 in the main paper, Tables 8 to 10
don’t apply prompt decomposition but only the weighting
strategies. We include ViCLIP on video and image data,
as well as CLIP, OpenCLIP, and BLIP which is finetuned
on HowToCaption, as backbones. First, we observe that in-
dependent of the prompt (verb, object, or action) averaged
over datasets and backbones, dynamic weights and static
weights improve over using no weights. The combination
of static and dynamic weights further improves over both,
static weights or dynamic weights on their own, showing
the capabilities of static and dynamic weights as well as
their additive effects. Moreover, OpenCLIP and BLIP im-
prove around 0.5 — 1% with dynamic weights across differ-
ent prompts, while the accuracy of ViCLIP and CLIP only
shows minor changes. This confirms the assumption that
the benefit of dynamic weights highly depends on the back-
bone.



Model Data Set | VH Daly YC  gYT || avg Model Data Set | VH Daly YC gYT || avg
base| 63.33 75.62 33.84 2940| 50.55 base| 62.48 66.44 53.70 45.72| 57.09
‘ . dyn | 63.27 7582 34.00 29.62| 50.68 , . dyn | 62.00 66.53 53.82 45.75|| 57.03
VICLIP— vid - o | 64.66 7620 36.17 30.96]| 52.00 VICLIP— vid - o | 62.24 6873 54.86 46.56| 58.10
s+d | 64.72 7621 36.54 31.26| 52.18 s+d | 6230 68.71 54.94 46.78| 58.18
base| 64.17 75.87 32.64 28.40| 50.27 base| 62.06 66.83 53.80 4439 56.81
. . dyn | 64.17 76.03 32.60 28.62| 50.36 . . dyn | 62.18 66.92 5398 44.63| 56.93
VICLIP img 0 | 65.44 7635 34.16 29.67| 5141 VICLIPimg - i | 60.92 68.59 54.14 4503| 57.17
s+d | 65.38 7632 34.24 30.00| 51.49 s+d | 61.10 68.62 54.30 45.17| 57.30
base| 69.90 79.71 29.30 23.29|| 50.55 base| 65.74 7627 46.50 36.24| 56.19
CLIP img v | 7014 7979 2914 2257] 5041 CLIP img Qyn | 6647 7678 4602 3570/ 56.24

stat | 72.32 82.06 30.43 26.44| 52.81
s+d | 72.80 82.48 29.74 25.69| 52.68

stat | 65.68 78.70 47.35 38.06( 57.45
s+d | 65.56 79.45 47.19 37.52|| 57.43

base| 70.87 78.65 41.16 17.75|| 52.11
dyn | 70.57 7842 41.72 18.43]|| 52.29
stat | 69.36 80.69 43.09 20.59| 53.43
s+d | 69.60 80.24 43.45 21.60| 53.72

OpenCLIP img

base| 67.55 76.43 49.68 28.35|| 55.50
dyn | 68.52 75.67 50.76 30.91| 56.47
stat | 64.90 77.86 50.96 32.03|| 56.44
s+d | 65.44 77.00 51.21 34.20(| 56.96

OpenCLIP img

base| 63.63 64.75 33.00 31.18|| 48.17
dyn | 64.66 6545 33.20 31.41| 48.68
stat | 68.15 68.23 44.86 40.41| 55.41
s+d | 69.00 67.91 45.54 40.49| 55.74

BLIP img

base| 59.95 59.85 32.68 34.17| 46.66
dyn | 60.62 59.59 33.76 35.57| 47.39
stat | 62.48 58.09 45.34 40.27|| 51.55
s+d | 62.06 57.94 46.38 42.15|| 52.13

BLIP img

Table 8. Ablation study on the effect of weights for verb
prompts. Accuracy for verb prompts for vanilla GEM (base),
dynamic weights for the last three layers (dyn), static weights
(stat), and the proposed combination of static and dynamic
weights (s+d), evaluated on the V-HICO (VH), Daly, YouCook-
Interactions (YC), and GroundingYouTube (gYT) datasets.

11. Ablation for weights

For prompt decomposition the same weights of wyerp =
0.2, wop; = 0.2,wqee = 0.6 are applied in all experi-
ments. To analyze the importance of the weighting scheme
we compare 4 different weighting schemes in Table 11.
One that prioritizes objects (W1), one that prioritizes verbs
(W2), one that treats all three prompts equally (W3), and
our original weighting scheme (org). We observe similar ac-
curacy for the different weighting schemes, while our orig-
inal weights perform the best.

12. Comparison to multimodal LL.Ms

We extend our comparison to State-of-the-art methods to
multimodal large language models, namely Qwen-VL [1].
Note that Qwen is not directly comparable, as it utilizes lo-
cation information during training and differs significantly
in both the number of parameters and the amount of train-
ing data. We provide a comparison of Qwen-VL and
VideoGEM in Table 4. We use “Generate grounding for
” as a prompt template for Qwen-VL. We use a different
prompt for Qwen-VL compared to VideoGEM to ensure
the highest rate of bounding box predictions for Qwen-VL.
The center of the predicted bounding box is the prediction
for Qwen-VL. The results indicate that our training-free
method VideoGEM outperforms Qwen-VL on average.

Table 9. Ablation study on the effect of weights for ob-
ject prompts. Accuracy for object prompts for vanilla GEM
(base), dynamic weights for the last three layers (dyn), static
weights (stat), and the proposed combination of static and dynamic
weights (s+d), evaluated on the V-HICO (VH), Daly, YouCook-
Interactions (YC), and GroundingYouTube (gYT) datasets.

13. Ablation for CLIP prompting

We compare the prompt decomposition of VideoGEM with
the prompting technique proposed by CLIP in Table 13.
We apply the 80 prompt templates that are provided by the
CLIP paper to the test labels. Two different settings are used
to obtain the final prediction. In the first setting, the text
embeddings are averaged (avg. txt.) and then the combined
weights of VideoGEM are applied to the single averaged
text embedding resulting in a single heatmap. In the second
setting, the combined weights are applied to each of the 80
prompts individually resulting in 80 heatmaps that are aver-
aged pointwise (avg. heat.). The location of the maximum
logit in the heatmap is the predicted location for both set-
tings, similar to VideoGEM. VideoGEM significantly out-
performs CLIPs prompting technique. This shows, that the
benefit of our proposed prompt decomposition comes not
only from the majority voting but the prompt decomposi-
tion itself.

14. Qualitative analysis

We present qualitative examples of predictions from our
VideoGEM model, using ViCLIP as the backbone with
video inputs on the V-HICO and GroundingYouTube
datasets in Figures 6 and 7 respectively. The ground truth



Model Data Set | VH Daly YC  gYT || avg
base| 65.08 73.75 53.62 51.28| 60.93

dyn | 64.84 73.81 53.62 51.25| 60.88

VICLIP vid - v | 66.53 7423 52.97 51.93|| 61.42
s+d | 65.68 74.17 52.97 51.99|| 61.20
base| 65.20 74.00 52.17 48.80| 60.04
. . dyn | 64.66 74.04 5237 48.91| 60.00
VICLIP—img - 0 | 65.86 74.62 52.65 4951 60.66
s+d | 65.80 74.50 52.85 49.66 60.70
base| 67.79 7852 50.08 36.92| 58.33
CLIP img Qyn | 6743 7847 4968 3683 58.10

stat | 68.76 80.91 51.37 39.65|| 60.17
s+d | 68.94 80.53 50.84 39.31|| 59.91
base| 68.28 74.05 56.87 32.91|| 58.03
dyn | 68.64 74.24 5647 35.58|| 58.73
stat | 66.10 75.50 58.68 36.18|| 59.12
s+d | 66.77 74.87 57.36 38.38| 59.35
base| 67.79 69.00 34.77 37.97| 52.38
dyn | 69.00 68.86 37.02 39.47|| 53.59
stat | 69.30 71.86 46.26 45.52| 58.24
s+d | 70.02 70.68 47.99 46.53| 58.81

OpenCLIP img

BLIP img

Table 10. Ablation study on the effect of weights for ac-
tion prompts. Accuracy for action prompts with vanilla GEM
(base), dynamic weights for the last three layers (dyn), static
weights (stat), and the proposed combination of static and dynamic
weights (s+d), evaluated on the V-HICO (VH), Daly, YouCook-
Interactions (YC), and GroundingYouTube (gYT) datasets.

Setting VH Daly YC gYT | avg
W1 73.52 7727 56.55 56.43| 65.94
w2 75.57 7838 5237 54.99| 65.33
w3 77.80 78.74 52.33 54.98| 65.96
org 75.75 7825 55.10 57.21| 66.58

Table 11. Influence of different weighting schemes. VideoGEM
with prompt decomposition and combined weights is evalu-

ated with different weighting schemes: wyerp = 0.1, wop; =
0.3, Wact = 0.6 (W), Wyers = 0.3, Wop; = 0.1, Weer = 0.6
(W2)7 Wyerb = %,wobj = %,wact = %(W3), Woyerb =

0.2, wop; = 0.2,wqct = 0.6 (org). Where WI prioritizes ob-
jects, W2 prioritizes verbs, W3 treats all prompts equally, and org
are the original weights employed in the main paper. The weight-
ing schemes are evaluated with ViCLIP on video input on V-HICO
(VH), Daly, YouCook-Interactions (YC), and Grounding YouTube
(eYD).

bounding box is green and the final VideoGEM prediction is
white. The individual prompt predictions and heatmaps are
shown for action, object, and verb prompts in red, blue, and
yellow respectively. We observe that the heatmaps and the
predicted locations for verb prompts differ the most from
action and object prompts. Mostly all three predicted lo-
cations are close together, especially for actions with small
spatial scale such as “spread butter”. However, when the
action is bigger as for “unpacking suitcases” VideoGEM

Model VH Daly YC gYT | avg
Qwen-VL 84.20 63.05 28.49 57.69| 58.36
VideoGEM 75.74 78.25 55.10 57.21| 66.58

Table 12. Comparison to multimodal LLMs. VideoGEM is
compared to a multimodal large language model, namely Qwen-
VL [1]. For Qwen-VL the prompt template ”Generate grounding
for ” is applied. The center of the predicted bounding box is the
prediction of Qwen-VL. VideoGEM is applied with ViCLIP as a
backbone on video input. Both models are evaluated on V-HICO
(VH), Daly, YouCook-Interactions (YC), and Grounding YouTube
(gYD.
Setting VH Daly YC gYT | avg
avg. txt. 63.33 63.10 51.09 54.37| 57.97
avg. heat. 63.33 63.04 51.09 54.41| 57.97
VideoGEM 75.75 78.25 55.10 57.21| 66.58

Table 13. Comparison to CLIP prompting. The prompt decom-
position of VideoGEM is compared to the prompting technique of
CLIP. The 80 prompt templates that are provided by the CLIP pa-
per are used to generate 80 prompts. These prompts are used in
two different settings. In the first setting, the 80 prompts are av-
eraged, resulting in one text embedding. The combined weights
of VideoGEM are then applied (avg. txt.). In the second setting,
the combined weights are applied to each prompt individually re-
sulting in 80 heatmaps (avg. heat.). The final prediction in both
settings is obtained by taking the location of the maximum logit in
the heatmap. VideoGEM is applied with ViCLIP as a backbone on
video input. Both models are evaluated on V-HICO (VH), Daly,
YouCook-Interactions (YC), and GroundingYouTube (gYT).

centers the action between its components. Moreover, if
predictions are slightly off, such as in “catching fish”, or
“pulling son”, where the action prompt initially is outside
the ground truth bounding box focusing only on the ob-
ject, VideoGEM drags the prediction back into the bound-
ing box, leading to more robust and accurate predictions.

15. Limitations

VideoGEM is designed for spatial action grounding. It con-
siders the temporal context of videos only implicitly via its
video backbone. VideoGEM’s predictions are spatial lo-
cations for the given input images/videos without temporal
predictions. Moreover, the proposed prompt decomposition
only works for action grounding in its current state. How-
ever, this could be adapted to more general settings.
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Figure 6. Qualitative examples for VideoGEM on V-HICO. VideoGEM is applied with ViCLIP on video data. The main frame with its
label is shown. The green bounding box is the ground truth and the white cross is the final prediction of VideoGEM. Besides that are the
heatmaps for the action, object, and verb prompt. The individual predictions for the action, object, and verb prompt are shown by red, blue,
and yellow crosses respectfully. The ground truth label of the image is shown on the left.
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Figure 7. Qualitative examples for VideoGEM on GroundingYouTube. VideoGEM is applied with ViCLIP on video data. The main
frame with its label is shown. The green bounding box is the ground truth and the white cross is the final prediction of VideoGEM. Besides
that are the heatmaps for the action, object, and verb prompt. The individual predictions for the action, object, and verb prompt are shown
by red, blue, and yellow crosses respectfully. The ground truth label of the image is shown on the left.



