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Supplementary Material

What is expected? The supplementary material consists of
datasets details, experiments details, and extended experi-
ments analysis mentioned in the main paper. In addition,
videos of qualitative examples of our method on VideoAt-
tentionTarget further demonstrate the robustness in chal-
lenging real-world scenarios.

A. Datasets Details
A.1. Datasets

Gaze360 (G360). [28] is video 3D gaze datasets. It is col-
lected in both indoor and outdoor environments in uncon-
strained setting, which contains 3D gaze of 238 subjects
with a wide-range head pose and gaze direction. G360 is
recorded at 8FPS. In all of our experiments, we always used
the same training set as [28] with 126928 samples. For the
test set, we followed the split of [28] where G360 Full cor-
responds to ”All 360°” (the entire test set) with 25969 sam-
ples, G360 180 corresponds to ”Front 180°” (gaze within
90°) with 20322 samples, and G360 40 to ”Front Facing”
(gaze within 20°) with 3995 samples. In addition to those
splits, we consider G360 Back (gaze above 90°) [8] with
5647 samples and finally G360 Face (all detected faces)
with 16031 samples, which is used in many constrained
gaze studies [1, 7, 9–11, 18, 55, 61]. When we refer to
G360 Face 180 (15895 samples), it corresponds to the de-
tected face with a gaze within 90°, a subset of G360 180,
the same for G360 Face 40 with 3687 samples. We used the
validation set described in [28] with 17038 samples.
GFIE. [25] is a video 3D gaze dataset collected indoors
with 71799 frames from 61 subjects (27 male and 34 fe-
male). It is an unconstrained dataset with a wide range of
head poses. It was collected for gaze following task; using
a complex calibrated laser setup, they can infer the 3D gaze
from the eye to the visual target direction. They recorded
people doing various indoor activities at 30 fps. We follow
the data splits described in [25], 59217 for training, 6281
for validation, and 6281 for testing.
MPSGaze (MPS). [59] is a modified 3D gaze datasets that
has been automatically generated using ETH-Xgaze [63]
eyes. They apply a blending technique on people from the
Widerface [56] dataset to put eyes with a known 3D gaze
from ETH on heads with similar head poses. This dataset
is diverse, with more than 10k identities and challenging
poses, appearances, and lighting conditions. However, the

blending process reduces the quality of the visual appear-
ance, and it contains only near frontal head poses and no
back view. We used the same training and test split with
24282 samples in training and 6277 samples in testing. No
validation is defined in this work.
EYEDIAP (EDIAP). [19] is a 3D gaze video dataset. It in-
cludes videos from 16 subjects (30 fps), using either screen
targets (CS, DS subset EDIAP) or 3D floating balls ( FT
subset EDIAP-FT) as gaze targets. It is a constrained setup
with mainly frontal head poses. Following [12, 54], we
used the evaluation set under screen target session (CS, DS,
namely EDIAP) with 16674 samples from 14 subjects.
MPIIFaceGaze (MPII). [60] is a 3D gaze image dataset
collected from 15 subjects in a screen-based gaze target
setup, resulting in a constrained dataset with mostly frontal
head pose. We follow the standard evaluation protocol
[12, 54, 60], which selects 3000 images from each subject
to form an evaluation set for a total of 45000 samples.
GazeFollow (GF). [43] is a 2D gaze image dataset anno-
tated on in the wild dataset for the gaze the following task.
The 2D target label corresponds to where a given person is
looking at in the image. It is a diverse dataset that includes
various head poses, appearances, scenes, and lighting con-
ditions. Overall, it has around 130K annotated person-target
instances in 122K images.

A.2. Video Processing
As mentioned in the main section, for video clip input, our
approach predicts the 3D gaze from an 8-frame video clip.
However, video datasets have different frame rates, which
can impact the gaze prediction. In this work, since G360
has a lower frame rate, we resample EYEDIAP and GFIE
to match G360’s frame rate of 8 fps.

A.3. Gaze Representation
Working with different 3D gaze datasets requires a unified
way to define and represent the 3D gaze vector. Usually, in
constrained gaze estimation, studies use data normalization
to map the input image to a normalized space where a vir-
tual camera is used to warp the face patch out of the original
input image according to the 3D head pose [63]. Thus, the
gaze is expressed in this virtual camera coordinate defined
by the 3D head pose.
However, in unconstrained settings, it is not possible to get
access to a robust and reliable 3D head pose; thus, we fol-
low the gaze representation of Gaze360 [28] in the “Eye



Figure S1. Input head crop using different scales. In our work, a
scale of -0.1 is used and proved to be effective in both constrained
and frontal face setting Sec. C.1

coordinate system”. The practical interpretation of the eye
coordinate system is that the positive x-axis points to the
left, the positive y-axis points up, and the positive z-axis
points away from the camera, i.e. [-1,0,0] is a gaze look-
ing to the right or [0,0,-1] straight into the camera from the
camera’s point of view, irrespective of subjects position in
the world. The origin of the gaze vector is the middle of
the eyes, except for MPS and MPII, where the gaze origin
is the average of 3D eyes and mouth landmarks resulting in
an origin located at the middle of the nose, and for GF, we
used the center of the head bounding box as the origin.

B. Experiments Details
Metric. We follow the test split described in the state-of-
the-art method and explained in Sec. A.1. As a metric, we
use the standard angular error in degrees between the pre-
dicted and ground truth gaze prediction [19, 28, 60, 63].
Previous methods reporting video evaluation used a 7-frame
video clip and predict the middle frame gaze direction.
Since our approach outputs eight gaze directions from an 8-
frame video clip, for a fair comparison, we use the 4th gaze
prediction of an 8-frame video clip to compute the evalua-
tion metric.
Training. We used the same setup in all the experiments
to be as fair as possible. All the models are trained for a
minimum of 20 epochs. We used an early stopping on the
validation set with a patience of 10 epochs. We use the
AdamW optimizer [37] with a learning rate of 1e-4 and a
cosine annealing schedule with a 5 epochs linear warmup
(from 2e-5 to 1e-4). For evaluation, we report the perfor-
mance of the best model defined by the best angular error
on the validation set.
Data augmentation. Data augmentation is crucial for ro-
bust gaze estimation in the wild. In this work, we used stan-
dard data augmentation techniques. First, we applied jit-
tering during the head crop to introduce slight variations in
scale and aspect ratio, which reduces the model’s sensitivity
to noisy or imprecise head bounding boxes. Next, color jit-
tering was applied by adjusting brightness, contrast, and sat-
uration, making the model more resilient to diverse lighting

MPII EDIAP
Method Training Dataset Img Img Vid
PureGaze [13] (Res18) G360I Face 9.3 9.2 -
Liu et al. [34] (Res18) G360I Face 7.7 9.0 -
Liu et al. [34] (Res50) G360I Face 8.3 7.5 -
RAT [4] (Res18) G360I Face 7.6 7.1→ -
RAT [4] (Res50) G360I Face 7.7 7.1→ -
CDG [54] (Res50) G360I Face 7.0 7.3 -

Supervised (GaT) G360I&V 7.43 8.88 8.28
ST-WSGE (GaT) G360I&V+GF 6.43 8.87 8.19

Table S1. Comparision with state-of-the-art on constrained do-
main generalization benchmarks. All these methods [4, 13, 34,
53, 54] use a face crop as input and are trained on the detected face
subset of Gaze360. Our method is trained and tested on head crop
which makes it more general but more challenging for frontal gaze
estimation. → In [4] they used only 6400 sample for EDIAP but we
follow [12, 13, 54] with 16674 samples.

conditions commonly encountered in real-world scenarios.
Since gaze labels, such as those in the GF 2D dataset, may
exhibit bias toward one side, we applied horizontal flipping
to the images while appropriately adjusting the gaze direc-
tion, ensuring more balanced training data in the yaw gaze
direction. These augmentations collectively improved the
model’s ability to handle variations in data and enhance its
generalization to unseen environments.

C. Additional Experiments
C.1. Effect of Head Crop Size
As mentioned by Chen et al. [8], the input head crop scale
impacts the 3D gaze estimation. We find that the effect on
the prediction depends on the head orientation. Fig. S1 il-
lustrates the different inputs with different head crop scales.
As shown in Fig. S2b, a smaller head crop tighter to the face
improves 3D gaze estimation on frontal head poses, while
a larger head crop improves gaze on the non-frontal head
pose. Indeed, as shown in Fig. S1, a tighter crop increases
the eye resolution in the image and a larger crop provides
more context about the head orientation and upper body ori-
entation, which gives a strong prior for the gaze direction
when eyes are not visible. In the context of gaze estimation
in the wild, a scale of -10% is part of the Pareto front as
illustrated in Fig. S2b and is also the best on the G360 Full
image as shown in Fig. S2a. Therefore, it is a reasonable
trade-off between frontal and back view performance. We
use it for all our experiments.

C.2. Constrain Gaze Evaluation
The objective of this work is to improve unconstrained gaze
estimation in the wild. As seen in Sec. C.1, compared to a
tight face crop a larger crop improves gaze in challenging
head pose. Therefore, a larger crop is more suited to our
objective. In contrast, some methods specialize in frontal



(a) Effect of head bounding box scale as input on the 3D gaze angular error
on G360 Full test set. A scale ratio of 0.1 corresponds to a 10% bounding
box scale.

(b) Effect of head bounding box scale on the angular error with respect to
G360 Back and G360 40 test subset.

Figure S2. Effect of head crop size.

gaze estimation and rely on tight face crops, which provide
better resolution for the eye regions. While this is not a
fully fair comparison, we compare our approach to these
constrained methods for generalization on constraint bench-
marks. Note that for the constrained methods, models are
trained and tested only on a subset of detected faces (G360
Face), while in our approach the model is trained on G360
Full.
As shown in Tab. S1, on MPII, the supervised GaT lags
behind the best method by 6%. On EDIAP, GaT is 21%
behind the best method in image evaluation but narrows the
gap to 13% when evaluated on videos. Then, when using
our ST-WSGE learning framework including GF labels, we
observe an important improvement on MPII with state-of-
the-art angular error of 6.43 compared to 7 from CDG. On
EDIAP the improvement is marginal. Compared to EDIAP,
MPII has more diversity in lighting conditions and environ-
ment. GF doesn’t contain a lot of frontal gaze direction but
has a broad diversity of environments. Therefore, the im-
provement on MPII should come from the additional diver-

Figure S3. Image vs video predictions, where does it help?. GaT
trained on G360I&V and tested on G360 Full image and video.
The difference between image and video angular error with re-
spect to the ground truth gaze directions from the camera ([0,0,-
1]). The mean and standard deviation are displayed for each 10°
bin. Positive values indicate better performance in video predic-
tion compared to image prediction.

sity that GF brings but this is not useful for EDIAP predic-
tion. While constrained methods excel in frontal settings,
they fail in unconstrained scenarios. Our approach, which
achieves state-of-the-art performance in unconstrained en-
vironments (G360, GFIE) while remaining competitive in
constrained settings (MPII, EDIAP), proves to be a versa-
tile and robust solution for gaze estimation in the wild.

C.3. Qualitative Analysis

When does temporal context contribute most effec-
tively? As seen in the main paper, video prediction con-
sistently outperforms image prediction. To understand the
significance of temporal context in gaze estimation, we ex-
amined cases with large angular errors between image and
video predictions. Several key observations emerged. As
illustrated in Fig. S4 in the first two rows, temporal con-
text proves valuable during blinks, as it allows the model to
interpolate gaze direction when the eyes are closed. If the
head pose is not informative, temporal context helps disam-
biguate between blinking and looking down since the eyes
are not visible, as shown in row 1. Additionally, when in-
dividuals are viewed entirely from behind (rows 6-7), video
inferences provide a more consistent gaze direction in re-
lation to time. Thus, there is less jittering and it might im-
prove the prediction accuracy. In rows 4-5, the head and eye
motion can be used in video prediction to improve the gaze
direction. Finally, it can help in case of occlusion, as seen
in row 3.



Furthermore, we explore the impact of image- and video-
based prediction with respect to gaze direction. Indeed, we
expected more improvement when people are from the back
since additional head motion cues can be useful for gaze
estimation. In the results, video prediction on G360 Back
clearly improves image prediction. In addition, in Fig. S3,
we plot the difference between image and video prediction
angular error for different gaze directions. If we look at
the trend, video prediction seems to be better, especially for
gaze over 150°, but given the standard deviation, it might
not be a statistically significant observation. A more de-
tailed analysis by considering only cases where there is a
head motion can better highlight the impact of video pre-
diction.
What are the limitations of temporal context for gaze?
We investigate prediction made on the VideoAttentionTar-
get [15] (VAT) videos using our ST-WSGE framework and
GaT model. VAT is a challenging dataset with real-world
scenarios, various appearances, and diverse gaze distribu-
tion, making it well-suited for assessing our approach. Our
qualitative analysis reveals two limitations of video-based
inference compared to image-based inference using our
model. The first limitation arises in cases of rapid head ro-
tation, as illustrated in Fig. S5, temporal context may be
misused, leading to predictions that do not align with the
actual gaze. It might be because no rapid head motion is
present in the G360 training sets. The second aspect in-
volves cases of “gaze recentering”, where the gaze direc-
tion returns to its initial position following a shift. This be-
havior can occur very rapidly, within just 3-4 frames. Due
to the smoothing effect in the temporal modeling, the pre-
dicted gaze may not exhibit the same amplitude as the actual
movement. Indeed, this behavior is not present in the G360
dataset, and the use of videos sampled at 8 frames per sec-
ond may limit the ability to capture fine-grained gaze dy-
namics. However, such behavior is better captured during
image-based inference. This highlights a trade-off: while
video-based inference provides smoother and more robust
predictions, image-based inference offers greater accuracy
but can result in jittery outputs. To mitigate the lack of natu-
ral gaze behavior we apply our ST-WSGE framework using
2D gaze video data from VAT. Unfortunately, since current
benchmarks don’t contain natural gaze behavior, the results
don’t show quantitative improvement. Further research to
evaluate this aspect is needed.
In which scenarios does ST-WSGE with GazeFollow la-
bels provide the most benefit? We demonstrated the ad-
vantages of ST-WSGE with GazeFollow labels across var-
ious benchmarks, both within- and cross-datasets. But in
which scenarios does it outperform supervised methods
trained solely on G360? To address this question, we an-
alyze predictions made in real-world scenarios using the
VideoAttentionTarget (VAT) dataset [15]. Our findings re-

veal that ST-WSGE achieves the most notable improve-
ments in cases of extreme head poses, particularly when
the head is facing downward, as shown in Fig. S6. It is
also more robust to appearance diversity like hair partially
occluding the face or varying skin tones. It also helps in dif-
ficult lighting conditions and low-resolution inputs. Addi-
tionally, we include a video (provided in the supplementary
materials) displaying predictions on VAT with an explana-
tion, enabling a direct comparison between the two methods
and a clearer visualization of our approach’s performance
on real-world data.
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Figure S4. Illustration of image against video prediction. Comparison between single-image (frame 0) and video predictions (frame
-3 to 4). We use our ST-WSGE learning framework with GaT trained on G360 and GF. All examples are from G360 test set. Rows 1-2
illustrate eye blinks, Row 3 shows an example of occlusion, Rows 4-5 demonstrate frontal head/eyes motion, and Rows 6-7 depict back
view prediction. In the last row, the first two frames are not part of the test subset. Arrows in red represent image predictions, and arrows in
magenta are video predictions. The angular error between groundtruth and prediction is displayed in red at the top right corner. The circles
in the images represent unit disks where 3D gaze vectors are projected onto the image plane (x,y in yellow) and a top view (x,z in blue)
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Figure S5. Illustration of image and video prediction in case of rapid head motion. We use our ST-WSGE learning framework with
GaT trained on G360 and GF. All examples are from VideoAttentionTarget [15] (VAT). Arrows in red represent image predictions, and
arrows in magenta are video predictions. The circles in the images represent unit disks where 3D gaze vectors are projected onto the image
plane (x,y in yellow) and a top view (x,z in blue). Note that since VAT has a frame per second (fps) of 24 and G360 has a fps of 8, we show
the temporal context used for video inference corresponding to 8 fps.
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Figure S6. Illustration of supervised against ST-WSGE learning framework with GazeFollow label. We use in both experiments our
GaT model. All examples are from VideoAttentionTarget [15] (VAT). Arrows in blue represent image predictions with supervised GaT
trained on G360, and arrows in red are image predictions with ST-WSGE GaT trained on G360 and GF. The circles in the images represent
unit disks where 3D gaze vectors are projected onto the image plane (x,y in yellow) and a top view (x,z in blue).
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