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In this supplementary material, we present the experi-
mental settings and implementation details in Section A,
followed by additional discussions and experiments in Sec-
tion B. The limitations of our current work are outlined in
Section C, and the proof of Lemma 1 is provided in Sec-
tion D.

A. Experimental Settings
Datasets ImageCLEF is a small-scaled dataset with 1,800
images across 12 object categories from three domains: Ima-
geNet ILSVRC 2012 (I), Pascal VOC 2012 (P), and Caltech-
256 (C). Office-Home is a medium-scaled dataset containing
approximately 15,500 images from 65 categories in four do-
mains: Art, Clipart, Product, and Real World. DomainNet
is the largest dataset, comprising around 600,000 images
from 345 categories across six domains: Clipart, Infograph,
Painting, Quickdraw, Real, and Sketch.

Baselines. Regarding prompt-based baselines, we compare
our method with MPA [1], DAPL [4], Simple Prompt [1],
PGA [8], and Zero-shot CLIP [9]. To ensure a comprehen-
sive evaluation, we also include comparisons with various
non-prompt methods such as DCTN [10], MDDA [11], MF-
SAN [14], T-SVDNet [7], and PFSA [3]. As we follow the
same settings as in [1, 4, 8], the results for these baselines are
reproduced based on their public implementations and hyper-
parameters to ensure consistency. Note that while DAPL,
MPA, PGA, and our method employ CoOp [12] with text-
end soft prompts, other methods fine-tune the transformer
block [2], both image and text-end soft prompts [6], or the
entire encoders [5, 13]. Since these alternative methods typ-
ically fine-tune many more parameters, we exclude them
from the experiments to ensure a fair comparison.

Metrics. We use the top-1 accuracy for each target domain
and the average accuracy across all domains as the evaluation
metric. Following [8], we conduct experiments in two stan-
dard settings: a source-combined setting, where data from

all source domains are merged, and a multi-source setting,
which utilizes individual domain identifications. We also
provide pair-wise single-source domain adaptation results
for the Office-Home dataset.

Implementation details For fair comparisons, we use
ResNet50 as our backbone on the Image-CLEF and Office-
Home datasets and ResNet101 on DomainNet. The weights
are initialized from a pre-trained CLIP model and kept frozen
during training. Following previous baselines [1, 4, 8],
prompts are trained using the mini-batch SGD optimizer
with a learning rate of 0.005. We use a batch size of 32 and
apply a cosine learning rate scheduler. For hyperparameters,
token lengths M1 and M2 are both set to 16. Additionally,
we do not require a pseudo-label threshold τ for label gen-
eration as we combine base-prompt and source-prompt to
generate enhanced soft pseudo-labels. For our specific pa-
rameter λT and λW , we simply set λT = λW = 0.5 for
all experiments. Code available at: https://github.
com/VuongLong/Clustering-Reinforcement-
Prompt-Learning/

B. Additional Experiments
B.1. Distance-Aware Pseudo-Label
As discuss in previous section, different transferability be-
tween domains motivate us a distance aware pseudo-labels
scheme. Specifically, we calculate the weighted average
cosine distance from the visual embedding z = fv(x) to the
text embeddings of each class across all source domains. We
recap Eq. (??) in the main for easier readability:

τ k
ave(x) =

1

2
τ k
base +

wk,i(x)

2

N∑
i=1

τ k
Si

(1)

and wi,k is the important weight for each domain-class.
Here we use the l2 distance between the visual embed-

ding zpre (the unnormalized visual embedding of x, where
z = zpre
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It is important to highlight that the weights wi,k(z) are
applied to compute the combined prompts τ k

ave, rather than
being applied directly to the outputs of the softmax (i.e., the
predictions from individual prompts). Specifically, the en-
hanced pseudo-labels are computed as described in Eq. (??)
in the main paper:
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It can be observed that this design preserves semantic sim-
ilarity, as the magnitude of cosine similarity between the
visual embedding and the text embedding of each individual
prompt is taken into account in the final pseudo-label. Mean-
while, the weights wk,i(x) represent the spatial relationship
between the visual embedding and the text embedding.

Distance Ar Cl Pr Rw Average

Average 76.0 62.6 87.0 87.5 78.3
cosine 76.6 56.2 88.2 86.7 76.9
L2 76.8 63.5 87.5 87.6 78.9

Table 1. Different metric for Distance-aware Pseudo-Labels on
Office-Home dataset.

To evaluate the effectiveness of this design, we compare
the performance of the proposed distance-aware pseudo-
labeling scheme with two alternative strategies: a simple
averaging of source prompts and a distance-aware approach
using cosine distance instead of L2. For the cosine distance,
we use z rather than zpre to compute weights and class cen-
troids. As shown in Table 1, the L2 distance achieves the
best performance, while the cosine distance performs the
worst. This discrepancy may be due to overlapping infor-
mation between the cosine similarity of visual embeddings
with text embeddings of prompts and the cosine similarity
of visual embeddings with class centroids.

B.2. Performance with ViT models
In the main paper, we conduct experiments using the ResNet
backbone. Additionally, we perform experiments with the

Setting Ar Cl Pr Rw Ave

Zero-Shot 86.6 72.4 92.8 92.7 86.1

PGA 87.5 77.2 94.5 94.5 88.4

ours 89.7 83.2 95.9 95.5 91.1

Table 2. Performance of ViT-14L on OfficeHome dataset.

ViT-14L model. The results presented in Table 2, compar-
ing our approach with the most recent SOTA method, PGA,
demonstrate that our approach outperforms previous meth-
ods.

B.3. Performance of corrupted dataset
To further assess the robustness of our method, we performed
experiments using corrupted data generated from the Office-
Home dataset (for details on the corruptions, refer to https:
//github.com/hendrycks/robustness).

Corruption Method Ar Cl Pr Rw Ave

No corruption Zero-Shot 71.2 50.4 81.4 82.6 71.4
PGA 74.8 56.0 85.2 86.0 75.5
ours 76.8 63.5 87.5 87.6 78.9

Defocus blur Zero-Shot 60.2 40.7 73.8 76.8 62.9
PGA 66.2 50.0 77.6 80.3 68.5
ours 69.1 61.3 78.1 81.1 72.4

elastic transform Zero-Shot 635 411 74.2 77.3 64.0
PGA 69.4 48.1 80.7 82.3 70.1
ours 69.3 60.5 82.1 83.2 73.8

Gaussian noise Zero-Shot 62.0 52.8 73.7 75.2 65.9
PGA 67.3 48.9 75.8 79.2 67.8
ours 68.1 60.2 75.2 80.6 71.0

Speckle npose Zero-Shot 62.1 38.5 65.3 71.2 59.2
PGA 67.3 47.0 74.2 78.3 66.7
ours 67.7 58.0 73.7 78.8 69.5

Table 3. Performance on Corrupted OfficeHome dataset.

The results in Table 3 demonstrate that our method re-
mains robust even as CLIP’s zero-shot performance declines.

C. Limitations
One of our main contributions is the enhancement of pseudo-
labels for target domains by effectively leveraging infor-
mation from source domains. Specifically, we analyze the
relationship between the target and source domains, consid-
ering both semantic similarity (via cosine distance between
visual embeddings and text embeddings of prompts) and
spatial relationships (via L2 distance in the pre-normalized
embedding space), to appropriately weight references from
source domains. Additionally, we demonstrate the equiva-
lence between the references provided by the base prompt
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and those from source prompts to the target prompt. How-
ever, due to the lack of access to the data used for training the
base prompt, we are unable to directly compare the quality
of references between the base prompt and source prompts.
This limitation results in suboptimal utilization of these refer-
ences, as we currently assign equal weight to the base prompt
and the weighted source prompts to balance their contribu-
tions, as described in Eq. (1). Addressing this limitation is a
key focus for future work.

D. Proof of Lemma 1
We propose minimizing the Wasserstein distance between
the target prompts’ text embeddings and the visual em-
beddings from the target domain. Specifically, denote
T = {τ k

T }Kk=1 where τ k
T represents the text embeddings of

the context prompt [P k
sh][P T ][CLASSk] for class k. Let

Pτ,π =

K∑
k=1

πkδτk
T

(5)

be the discrete distribution over the set of text embeddings
T for the target domain, where the category probabilities
π ∈ ∆K = {α ≥ 0 : ∥α∥1 = 1} lie in the K-simplex.
Additionally, let

PT =
1

NT

NT∑
j=1

δzj

represent the visual embedding distribution of the target
domain, where δ is the Dirac delta function and z = fv(x)
for the target image x. The clustering assumption is then
enforced by the following objective:

LW = Wdz

(
Pτ,π,PT

)
(6)

where dz represents a metric function. We use the cosine
distance dz(a, b) = 1− ⟨a, b⟩ since the visual embeddings
and text embeddings already lie in the unit hypersphere.
The following lemma demonstrates the behavior of π and ex-
plains how the Wasserstein term helps target prompts enforce
clustering properties.

Lemma 1 (Lemma 1 in the main paper) Let T ∗ ={
τ k,∗
T

}K

k=1
be the optimal solution of the OP in Eq. (6),

then T ∗ is also the optimal solution of the following OP:

min
T ,π
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σ∈Σπ
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[
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(
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)]
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where Σπ is the set of assignment functions σ : Z →
{1, ...,K} such that the cardinalities |σ−1 (k) |, k =
1, ...,K are proportional to πk, k = 1, ...,K. Moreover,
given the set of text embeddings T , the optimal σ of the
inner minimization is the nearest assignment: σ−1 (k) =
{z | k = argminmdz (z, τ

m
T )} is set of visual embeddings

which are quantized to kth text embedding τ k
T .

Proof:
It is clear that

Pτ,π =

K∑
k=1

πkδτk
T
.

Therefore, we reach the following OP:
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By using the Monge definition, we have
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Since T#PT = Pτ,π, T (zn) = τkT for some k. Ad-
ditionally,
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Finally, the the optimal solution of the OP in Eq. (6) is
equivalent to

min
T ,π

min
σ∈Σπ

NT∑
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which directly implies the conclusion.
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