
A. Method configuration

Across all baseline methods, we utilize a common set of
hyperparameters. For all baseline methods we utilize the
same pre-training dataset with the same image preprocess-
ing. Moreover we use the same amount of pre-training steps
(250k) as for our S3D-B method and the same fine-tuning
scheme, as highlighted in Tab. 10. Aside from this, we em-
ploy the SGD optimizer with LR 1e-2 with a PolyLR sched-
ule, momentum 0.99 and weight decay 3e-5 across all pre-
training experiments, as they showed to be highly robust
and reliable in the supervised medical image segmentation
setting using CNNs [20]. Moreover, we denote that all these
methods have their backbones replaced with a ResEnc U-
Net to minimize confounding effects of different architec-
tures.

A.1. Models Genesis
Models genesis [48] pre-text task is centered around restor-
ing original patches from transformed versions. The trans-
formed version is achieved by applying four different trans-
formations in various combinations, with the following
transformations: a composition of four separate pre-training
schemes: (i) Non-linear intensity transformation: Al-
ters the intensity distribution while preserving the anatomy,
focusing on learning the appearance of organs. (ii) Out-
-painting: Removes part of the image and requires the
model to extrapolate from the remaining image, forcing it
to learn the global structure of the organs. (iii) In-painting:
Masks a part of the image, and the model learns to restore
the missing parts, focusing on local continuity and context.
After having transformed the original image through these
augmentations, the model is trained to recover the origi-
nal image through a convolutional encoder-decoder archi-
tecture. This approach consolidates different tasks (appear-
ance, texture, and context learning) into one unified image
restoration task, making the model more robust and gener-
alizable.

Model specific Hyperparameters: The entire set of hy-
perparameters of Models Genesis are contained within the
data-augmentation. This allows us to transfer this transfor-
mation pipeline, as provided in the official repository with-
out any changes to the hyperparameters.

A.2. VolumeFusion
Volume Fusion [43] is a pseudo-segmentation task using
two sub-volumes from different 3D scans, which are fused
together based on random voxel-level fusion coefficients.
The fused image is treated as input, and the model predicts
the fusion category of each voxel, mimicking a segmenta-
tion task. Pretraining is optimized using a combination of
Dice loss and cross-entropy loss.

Method specific parameters: Volume Fusion has unique
parameters defining the size ranges of the rectangles used
for fusing together images. In our experiments we uti-
lize a rectangle size range between [8, 100] sampled uni-
formly for each axis. This represent the 62.5% of our in-
put patch size, and identical percentage as in the original
paper. Moreover the amount of rectangles sampled is an
important parameter. Like in the original paper we sample
M ∼ U(10, 40) different rectangles, iteratively. Lastly, the
number of categories was chosen to be 5, as in the original
paper (this represent K = 4).

A.3. VoCo
The ’Volume Contrastive Learning Framework’ (VoCo)
[46] is designed to enhance self-supervised learning for 3D
medical image analysis by leveraging the consistent con-
textual positions of anatomical structures. The method in-
volves generating base crops from different regions of 3D
images and using these as class assignments. The frame-
work then contrasts random sub-volume crops against these
base crops, predicting their contextual positions using a
contrastive learning approach. The authors utilize a Swin-
UNETR model architecture, employing the AdamW opti-
mizer with a cosine learning rate schedule for 100,000 pre-
training steps. The specific hyperparameters include crop-
ping non-overlapping volumes with a size of 64x64x64, and
generating 4x4 base crops during the position prediction
task. This represents an input patch size of 384×384×96
which is rescaled and resized to fit exactly 4x4 64x64x64
crops.
Since our chosen patch size 160x160x160 is incompatible
with the 64 cube length, we adjusted our patch size for
VoCo to 192x192x64. This accommodates a 3x3 grid of
64x64x64. Unfortunately the 4x4 grid led to exceeding the
memory limit hence a reduction was necessary. Moreover
we increased the target crop size from 4 originally to 5 and
increased the batch size from 6 (default in our other exper-
iments) to 12, to fully utilize the 40GB VRAM of an A100
node.

B. Longer Training schedule
MAEs are known to benefit from increasing the length of
the training schedule, as shown in He et al. [16]. We eval-
uate if this effect transfers to 3D medical pre-training by
increasing the training batch size by x8 to 48, the learning
rate to 3e − 2, and the iteration steps by x5 to a total of
1.25M steps. We refer to this model as S3D-Long to de-
note the longer training schedule with more data seen. We
denote that the architecture remains identical to the previous
architecture, to isolate the effect of the length of the steps as
well as the amount of samples seen. Results are presented in
Tab. 12. It can be observed that this x32 actually leads to a
decrease in overall model performance on our test datasets,

https://github.com/MrGiovanni/ModelsGenesis


Table 5. Publicly available checkpoint trained on the ABCD
dataset: To provide a public available checkpoint, we retrained
our proposed model on the ABCD dataset, indicated by a *. It
performs slightly worse than the network pre-trained on the private
dataset.

SSL Method No (Dyn.) No (Fix.) S3D* S3D

Dataset Dice Similarity Coefficient (DSC)

MS FLAIR (D1) 57.81 59.82 59.75 60.35
Brain Mets (D2) 63.66 56.53 64.20 65.24
Hippocampus (D3) 89.18 89.24 89.45 89.60
Atlas22 (D4) 63.28 65.52 66.61 66.95
CrossModa (D5) 85.64 83.44 83.61 84.08
Cosmos22 (D6) 60.28 78.17 80.01 80.00
ISLES22 (D7) 77.94 79.44 78.94 79.70
Hanseg (D8) 59.00 61.85 61.27 62.11
HNTS-MRG24 (D9) 66.73 65.90 67.03 68.62
BRATS24 Africa (D10) 93.07 92.51 92.49 92.19

Avg. DSC 71.66 73.24 74.34 74.88
Avg. Rank 3.2 2.9 2.4 1.5

showing a 0.6% lower average DSC as well as a 0.6% lower
Average NSD.
The observed performance degradation of the S3D-Long
model, despite the longer training schedule and increased
data exposure, suggests several possible factors at play.
While MAEs have shown benefits from extended train-
ing schedules in general computer vision tasks, the same
assumptions may not directly transfer to 3D medical im-
age pre-training due to the unique nature of this domain.
The findings highlight the importance of tailoring training
strategies to the domain.

C. Additional results
Aside from the quantitative data on the development and
test dataset, we provide the quantiative data of the ablation
experiments here. The following additional results are pro-
vided: 1. Results when fine-tuning in a low-data regime are
presented in Tab. 6. 2. Experiment on how to best trans-
fer weights when transferring to a dataset with more than
1 input channel is provided in Tab. 8 3. Results on how
the pre-training effects generalization is provided in Tab. 9.
4. Experiment results of investigating if one can reduce the
fine-tuning steps are presented in Tab. 10

C.1. Public weights trained on the ABCD dataset
Due to patient privacy concerns and data ownership reg-
ulations, we are unable to share the original pre-trained
weights. As an alternative, we retrained our best-
performing model on the National Institute of Health’s
Adolescent Brain Cognitive Development (ABCD) dataset.
This dataset comprises about 41k MRI scans with a 50-to-
50 ratio of T1-weighted to T2-weighted scans. The results,

Table 6. Forty images with SSL are almost as good as all data
from-scratch! The pre-trained S3D model almost reaches the per-
formance of the model trained from-scratch with only 40 train-
ing cases, with the exception of D4. Overall train/val/test dataset
size was 38/10/12 for D1, 67/17/21 for D2, 166/42/52 for D3,
419/105/131 for D4, 134/34/42 for D5. Results in the table are
reported on the validation set. full: Uses all train samples of the
dataset. * D1 has only 38 training cases for the train split.

SSL Method N Train D1 D2 D3 D4 D5 Avg. D1-D5

Scratch

10 40.78 43.52 84.94 44.11 76.66 58.00
20 44.46 59.46 86.75 46.33 78.67 63.13
30 45.42 64.20 87.14 48.22 78.47 64.69
40 49.37* 60.13 87.59 50.43 78.37 65.18
full 49.37 69.13 88.78 60.74 81.33 69.87

S3D (ours)

10 43.48 48.44 84.12 41.51 77.70 59.05
20 46.58 65.30 86.61 45.50 79.52 64.70
30 48.12 68.41 86.77 51.62 78.88 66.76
40 51.49* 72.91 87.46 53.05 80.82 69.15
full 51.49 74.01 88.83 62.39 81.54 71.65

Table 7. Pre-training length ablation: Longer pre-training does
not lead to improved performance. Interestingly, when exceeding
250k steps.

PT Iterations D1 D2 D3 D4 D5 Avg. D1-D5 Train Time [h]

62.5k 49.49 70.79 88.82 62.95 81.27 70.67 28
125k 50.56 70.48 88.86 62.51 81.69 70.82 56
250k 51.02 74.07 88.91 62.81 81.50 71.66 112
500k 50.93 72.71 88.88 62.17 81.86 71.31 224
1M 50.45 71.55 88.92 62.78 81.82 71.10 448

shown in Tab. 5, indicate that the original model slightly
outperforms the version pre-trained on the ABCD dataset.
This discrepancy is likely attributable to the greater diver-
sity and variation in the images within our private dataset,
which enables a more robust feature representation.

C.2. Comparison to previous work on CT data
Although this study focuses on brain MRI images, we also
evaluate our method on a CT downstream task. Table 11
presents the results of our approach on the BTCV multi-
organ segmentation task [22]. For comparison, we incorpo-
rate a diverse set of results reported in [33], which were
trained using an unspecified 80/20 data split. Addition-
ally, we fine-tune the publicly available HySpark check-
point [33] using the same five-fold cross-validation split as
for our method. Remarkably, M3D outperforms all other
methods, despite being pretrained exclusively on brain MRI
data. Notably, none of the related approaches surpass our
backbone trained on scratch. This highlights the critical role
of leveraging state-of-the-art networks and advanced train-
ing frameworks, such as nnU-Net. [20, 21].

D. Distinction to AMAEs
Concurrently with this work, [25] introduced the AMAEs
framework. Like our approach, it utilizes a dataset of ap-
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Figure 3. Distribution of our pre-training dataset. The dataset stems from 44 centers and includes 8400 Patients with a 60 to 40 female-
to-male ratio. Most patients were imaged with a 1.5 Tesla Philips Achieva or Ingenia scanner. The most prevalent modalities are T1 and
T2-weighted images with some additional FLAIR images present. While other modalities were in the dataset, these were not used as
prevalence was deemed too low.

Table 8. Replicating the pre-trained stem weights and freezing
them during the decoder warm-up phase yields the most stable and
equally best results.

Initialization Decoder Warm-Up Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Average STD

Replication Frozen 72.84 64.42 66.11 62.86 62.85 65.82 4.15
Replication Unfrozen 72.68 63.07 65.60 66.02 61.08 65.69 4.39
Random Frozen 74.38 60.89 65.10 67.55 61.31 65.85 5.51
Random Unfrozen 72.20 63.16 62.25 66.71 61.47 65.16 4.42

Table 9. Pre-training can improve generalization: We inves-
tigate generalization to a new modality time-of-flight (ToF) MRI
(top), and the generalization of a resulting method when translat-
ing it to a different clinic (bottom).

Experiment Setting No Dyn. No Fixed VoCo VF MG S3D-B

Modality shift TOF Angio. Aneurysms(D12) 42.61 22.76 22.32 31.21 34.60 28.72

In Distribution Brain Mets (D2) 72.81 67.93 64.34 71.69 69.05 71.56
Patient shift Brain Mets (D13) 64.08 61.61 56.78 63.95 64.22 64.54



Table 10. Fine-tuning length: When initializing from our pre-
trained checkpoint, it is possible to achieve a large fraction of the
final performance after less than 15% of the normal training time.
Despite this a full training schedule reaches better performance.
These experiments were conducted using S3D long on the valida-
tion splits.

FT Iterations D1 D2 D3 D4 D5 Avg. D1-D5

25k 50.85 73.99 88.51 55.49 46.00 62.97
37.5k 51.69 74.03 88.85 60.22 81.68 71.29
50k 51.13 73.53 88.93 60.14 81.92 71.13
75k 51.41 72.80 89.08 63.14 81.83 71.65
150k 50.95 71.28 88.96 62.51 81.92 71.13
275k 53.10 71.24 89.14 63.55 82.53 71.91

proximately 40k 3D images and employs a state-of-the-art
CNN architecture. However, in contrast to our more com-
prehensive evaluation, their assessment is based on three
in-distribution and one out-of-distribution downstream
dataset.

While evaluation on three in and one out-of-distribution
datasets can suffice to draw some insights, their evaluation
setup has additional limitations. First, they constrain them-
selves to a low-data regime and do not assess whether their
performance surpasses a default nnU-Net baseline that is
trained for 1000 epochs. Second, their fine-tuning strat-
egy is fixed to a single-channel input to align with the pre-
trained stem weights. While this would be okay for their
method, they apply the same limitation to their baselines,
which typically utilize all available modalities, which can
lead to stronger performance. For instance, in their evalu-
ation on the BraTS dataset, only one of the four available
modalities was used, potentially limiting the effectiveness
of the baseline models. These choices may impact result
reliability and align with Pitfall 3—unreliable evaluation
practices. To address such concerns, our work adopts a very
comprehensive evaluation strategy to allow drawing reliable
conclusions on the state-of-the-art in self-supervised learn-
ing for 3D medical image segmentation for the first time.
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Table 11. S3D outperforms all related work on the BTCV dataset [22]. Despite being pretrained exclusively on brain MRI data, our
network outperforms all related methods. Values above the line are sourced from Tang et al. [33], which used an unknown 80/20 split. To
fine-tuned their published pre-trained weights using a 5-fold cross-validation. Below the line, all models, including ours, were trained on
the same 5-fold cross-validation. Notably, even though all related work leveraged CT data for pretraining, none surpassed the performance
of our backbone model trained from scratch, emphasizing the importance of Pitfall 2.

Pre-training Method Network Spl Kid Gall Eso Liv Sto Aor IVC Veins Pan AG Avg
vox2vec [11] 3D UNet(FPN) [30] 91.40 90.70 59.50 72.70 96.30 83.20 91.30 83.90 69.20 73.90 65.20 79.50
SUP [14] Swin UNETR [14] 84.20 86.70 58.40 70.40 94.40 76.00 87.70 82.10 67.00 69.80 61.00 75.80
MAE [16] UNETR [15] 90.71 87.63 62.50 72.60 96.09 94.73 86.11 90.36 71.00 75.47 63.77 79.07
SimMIM [36] Swin UNETR [14] 88.33 86.82 62.43 74.36 92.35 90.70 83.03 87.43 68.04 68.43 58.65 76.44
SparK [36] MedNeXt [31] 90.92 87.66 62.43 74.36 95.03 84.85 86.04 80.63 68.83 76.57 61.43 79.21
HySparK [33] MedNeXt+ViT [33] 90.67 88.32 68.18 74.20 95.03 87.46 90.17 84.50 70.04 78.36 66.75 80.67

No MedNeXt+ViT [33] 90.35 87.46 63.18 74.49 95.09 86.00 89.29 83.22 71.85 79.48 62.59 80.27
HySparK [33] MedNeXt+ViT [33] 90.94 86.99 63.43 74.39 95.12 87.15 88.92 83.48 72.77 79.66 64.84 80.67
No (Dyn.) nnU-Net [20] 90.44 88.52 68.86 78.14 95.53 88.06 91.59 86.47 76.27 81.78 71.06 83.34
No (Fix.) ResEncL (fixed) [21] 91.97 89.58 68.76 79.18 95.96 91.97 92.80 87.16 77.29 84.01 72.21 84.63
S3D ResEncL (fixed) [21] 92.00 90.40 70.77 78.71 96.01 92.51 92.83 87.04 77.28 84.79 72.58 84.99

Table 12. Longer training schedule degrades performance.
When training with a larger batch size, higher learning rate, and
more train steps we observe a degradation in performance for DSC
and NSD. Ranks are calculated only between the four methods
presented in the table.

Dice Similarity Coefficient
Dataset No Dyn. No Fixed S3D S3D-Long

MS FLAIR (D1) 57.81 59.82 60.35 59.85
Brain Mets (D2) 63.66 56.53 65.24 64.81
Hippocampus (D3) 89.18 89.24 89.60 89.34
Atlas22 (D4) 63.28 65.52 66.95 64.58
CrossModa (D5) 85.64 83.44 84.08 84.02
Cosmos22 (D6) 60.28 78.17 80.00 80.01
ISLES22 (D7) 77.94 79.44 79.70 79.89
Hanseg (D8) 59.00 61.85 62.11 61.93
HNTS-MRG24 (D9) 66.73 65.90 68.62 67.94
BRATS24 Africa (D10) 93.07 92.51 92.19 92.90
T2 Aneurysms (D11) 46.76 41.97 47.26 44.15

Avg. DSC 69.40 70.40 72.37 71.77
Avg. Rank 3.09 3.27 1.55 2.09

Normalized Surface Distance

MS FLAIR (D1) 78.77 80.16 80.03 80.40
Brain Mets (D2) 80.72 76.72 82.53 82.32
Hippocampus (D3) 99.46 99.42 99.46 99.44
Atlas22 (D4) 70.52 73.77 75.35 73.45
CrossModa (D5) 99.85 99.76 99.81 99.80
Cosmos22 (D6) 72.60 96.47 97.45 96.75
ISLES22 (D7) 88.55 90.45 90.59 90.72
Hanseg (D8) 82.20 85.94 85.80 86.20
HNTS-MRG24 (D9) 71.83 71.26 74.07 73.17
BRATS24 Africa (D10) 95.66 95.36 95.06 95.72
T2 Aneurysms (D11) 62.24 55.56 61.18 57.07

Avg. NSD 82.04 84.08 85.58 85.00
Avg. NSD Rank 2.82 3.18 2.00 2.00
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