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A. Additional Results

A.1. CT Scan Results

We present qualitative reconstructions of real anatomical

structures with two vessel structures from the IRCADb-01

dataset [36] and two from the Medical Decathlon dataset

[4], using pixel-level human-annotated segmentations. We

evaluate CrossSDF on hepatic vessels from slices spaced

5mm apart, and liver vessels at 1mm apart. We display the

results across different methods in Fig. A1 which demon-

strates our model’s ability to handle clinically relevant chal-

lenges. As no ground truth 3D geometry is available, we

created training and test splits by withholding ≈ 10% of the

slices and reported the 2D intersection-over-union (IoU) on

the test set. To do so, we use integer division to compute

a slice skipping frequency to withhold cross-sections. For

example, for the hepatic vessel of patient 31, we remove

every 61//10 = 6th cross-section to compute 2D IoU. The

quantitative results can be found in Tab. 3.

Similarly to the synthetic scenes present in the main pa-

per, OReX [33] generally results in overly smooth geom-

etry. In some cases, such as the thin and highly-branched

contours of Patient 33’s Hepatic Vessel, OReX fails to con-

verge to a good reconstruction. Screened Poisson [19] han-

dles these cases more faithfully but is prone to breakages

from the skipped slices, which is evident both qualitatively

and quantitatively. Finally, we note CT scans with sparse

slice thicknesses are particularly difficult to reconstruct,

highlighting our model’s robustness in such scenarios [1].

A.2. Additional Synthetic Results

Additional Comparisons. We display further qualitative

comparisons in Figs. A2 and A4. We also report quantita-

tive comparisons of 3D Volume IoU in Tab. A1. In Fig. A3

we also show results from Bermano et al. [9], a non-neural

method that can handle arbitrary cross-section orientations,

and works by a barycentric blending of indicator functions

in the cells of the planar arrangements of the cross-sections.

As can be seen in the figure, their approach is susceptible to

laddering artifacts, and fails to run on more complex scenes

due to poor scalability.

No 2D SDF Labels. Although we supervise our model

with 2D SDF labels, our symmetric difference loss prevents

the neural field from learning each 2D SDF beyond its inte-

rior/exterior classification. For this reason, the optimization

could be driven using indicator function labels (e.g., ‘1’ for

exterior and ‘-1’ for interior). In Fig. A5 we present the re-

sult of doing so on the Balloon Dog scene (denoted as “No

2D SDF Labels”). We find that this leaves the predictable

laddering artifacts along each contour. We attribute this to

producing a discontinuous loss surface at the classification

boundary. Conversely, our use of an L2 loss on 2D distance

labels provides a smooth guide to this boundary.

Standard Hash-grid. In addition to the baselines reported

in the main paper, we conduct a further ablation by remov-

ing all of the key components of our CrossSDF approach;

i.e., the adaptive encoding, Fourier features, and symmetric

difference loss. We denote this as the ‘Standard Hash-grid’

baseline. The quantitative results for the Elephant scene are

presented in Tab. A2. Removing these components leads to

a degradation in performance, with the full model achieving

the lowest CD and HD values.

A.3. Supplementary Video

In the video, available on our website, we provide compari-

son of a reconstruction from our approach compared to the

baselines. We also visualize the optimization process on a

different scene.

B. Implementation Details

We implemented our solution in PyTorch and used the ac-

celerated tiny-cuda-nn [28] implementation for our hash-

encoding module. All scenes were trained using a single

24GB NVIDIA RTX 4090. We train our network for a total

of 500 epochs. The running time is commensurate with the

complexity of the scene, taking as little as 20 minutes in

the simplest cases (e.g., Elephant in Fig. A4) to 5 hours in

the most complex scenes (e.g., Alveolis in Fig. A2). Our

method does not have to create a (cubic-complexity) ar-

rangement of cross-sectional planes, unlike [9, 46], and thus

we scale better with the input complexity, only depending

on the number of samples. Our network hyper-parameters

are not tuned for each dataset. We use the same weights for

losses and hash encoding resolution for all the datasets dis-

played. The mesh is extracted using marching cubes at 5123

at the end of training (similarly for competing methods).

B.1. Model Architecture

In Tab. A3 we provide our hyper-parameters and network

specifications. We use geometric initialization [43] to start

the model as a sphere at the beginning of training. The neu-

ral networks are trained using the ADAM optimizer. The

learning rate is initialized to 5 × 10−4, and reduced by a

factor of 0.9 every 10 epochs.



Thin Structures

Alveolis (100) Cerebral (75) Coronaries (75) Coro (75) Heart (100) Pulmonary (75)

Method Align. Non-Align. Align. Non-Align. Align. Non-Align. Align. Non-Align. Align. Non-Align. Align. Non-Align.

IoU ↑

Neural-IMLS [40] 0.050 0.048 0.44 0.045 0.029 0.040 0.71 0.74 0.033 0.021 0.056 0.045

Screened Poisson [19] 0.84 0.72 0.85 0.79 0.78 0.68 0.85 0.89 0.28 0.71 0.89 0.86

OReX [33] 0.37 0.12 0.64 0.33 0.51 0.63 0.96 0.97 0.32 0.42 0.59 0.74

CrossSDF (Ours) 0.87 0.76 0.94 0.90 0.88 0.78 0.99 0.97 0.77 0.70 0.96 0.94

Table A1. Volume IoU comparison across thin structures.

Elephant

Method CD (↓) HD (↓)

CrossSDF (full model) 0.58 7.1

Standard Hash-grid 1.51 15.0

Table A2. Ablation of CrossSDF with all the components removed

on the Elephant scene using aligned planes.

Hyper-parameter Value

SDF Network Parameters

MSDF hidden layers 1

MSDF hidden layer width 256

Mhash hidden layers 1

Mhash hidden layer width 128

MRFF hidden layers 1

MRFF hidden layer width 128

Constant for RFF scaling α 0.1

Softplus Activation β 100

Hash-Grid and Fourier Features

Hash-grid levels 16

Minimum hash-grid resolution 25

Maximum hash-grid resolution 210

Hash-grid feature dimension 4

Hash dictionary size 222

Gaussian distribution variance for RFF 1.0

Sampling and Regularization

Batch Size 217

Minimum Surface β 100

Threshold Samples Per Contour 50

λeik Eikonal reg. weight 1× 10−3

λmin minimum surface reg. weight 5× 10−2

Weight decay weight 2× 10−3

Table A3. Hyperparameters and network specifications.

B.2. Data Pre-Processing

Contouring. For our synthetic dataset, we extract contours

(as polylines) by taking the mesh and cutting plane param-

eters, and use this to compute a set of contours that re-

sults from cutting the mesh with the plane (e.g., each vertex

has two connecting edges). For medical CT scans, human-

annotated segmentations come in pixelized binary mask for-

mat, with slices along one axis. For each mask we generate

a contour by running marching squares at 512 resolution.

Sampling. For the planar sampling Ωpl, we employ a com-

bination of uniform sampling, on-contour sampling, and

fixed-radius sampling, as described below:

• On-Contour Sampling: (Ωon): We uniformly sample 25

points along each edge of the contour.

• Fixed-Radius Sampling: For each on-contour sample

x ∈ Ωon, we take two additional samples, each located

a fixed distance ϵ from the edge in the perpendicular di-

rection. One sample is positioned outward, perpendicular

to the contour, while the other is positioned inward.

• Uniform Sampling: In each slicing plane, we perform

uniform sampling, generating 10,000 samples per plane.

• Adaptive Contour Sampling: We sample a bounding

box around each contour until at least 50 interior sam-

ples are gathered. This ensures thin structures with low

cross-sectional area are captured.

Following a similar approach to OReX, we compute la-

bels for the newly generated samples at predetermined in-

tervals of 0, 50, 100, 200, and 300 epochs as part of a

pre-processing step. During each re-sampling phase, the

fixed radius ϵ is gradually reduced over time with values

ϵ = 2−5, 2−6, 2−7, 2−8, 2−8. The label pre-processing step

is efficient, taking less than three minutes for all tested

scenes.

B.3. Baselines

For the point cloud reconstruction baseline methods, we use

the on-contour samples Ωon as a dense point cloud along

each contour. For POCO [11], we use the model pre-trained

on the ABC 10K dataset [21], which produced the best re-

sults relative to the alternative pre-trained models available.



Figure A1. Additional qualitative results on real CT vessel structures. We compare our CrossSDF approach with existing methods. Note

the ‘CT contours’ are overlayed on our result to improve viewing clarity.



Figure A2. Additional qualitative results of thin synthetic data in the aligned setting. We compare our model with existing methods.

Figure A3. Additional qualitative results from the method outlined in Bermano et al. [9] using our synthetic dataset. Note the extreme

laddering artifacts.



Figure A4. Additional qualitative results of different methods on the thick synthetic dataset, for aligned slices. We compare our model

with existing methods.

Figure A5. Additional qualitative ablation results on the Balloon Dog scene.
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