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9. Distributions of hierarchical distances
To analyze the performance of ProHOC in more detail,
we compute histograms of hierarchical distances between
the ground truth and the predictions. We compute these
histograms for ProHOC with EntCompProb as the OOD
model. For a more detailed evaluation of the hierarchical
distances, we decompose these into an overprediction dis-
tance and an underprediction distance as

distH(y, f(x)) =distH(LCA(y, f(x)), f(x))

+distH(LCA(y, f(x)), y)
(24)

where y is the ground-truth node, f(x) is the predicted node
and LCA(y, f(x)) is the lowest common ancestor of y and
f(x), i.e., the deepest node that has both y and f(x) as de-
scendants (where descendants includes itself). We will use
LCA = LCA(y, f(x)) for brevity. With this decomposi-
tion, we get the following error cases:
• The prediction is deeper than the LCA:

distH(LCA, f(x)) > 0.
• The ground truth is deeper than the LCA:

distH(LCA, y) > 0.
• The prediction is a descendant of the ground truth:

distH(LCA, f(x)) > 0 and distH(LCA, y) = 0. We de-
note this case pure overprediction.

• The prediction is an ancestor of the ground truth:
distH(LCA, f(x)) = 0 and distH(LCA, y) > 0. We de-
note this case pure underprediction.

Figures 3 to 5 illustrates these concepts.
The decomposed hierarchical distances are shown in

Figures 6 to 8 where each sample in the respective test sets
contributes to a histogram entry.

For OOD data, we observe both over- and underpredic-
tions. Notably, pure overprediction distances of 1 are fre-
quent across all three datasets. In contrast, ID data shows
a clear trend of pure underprediction, with many samples
being predicted as ancestors to the ground truth. As dis-
cussed in Sec. 5.4, ProHOC with EntCompProb generally
demonstrates lower ID performance compared to the other
models. However, these histograms reveal that the low ID
performance is primarily due to predicting ancestors to the
ground truth, a behavior that may be acceptable in some ap-
plications.

LCA

f(x)

y

Figure 3. Prediction example: distH(LCA, f(x)) = 2,
distH(LCA, y) = 1.

LCA
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Figure 4. Prediction example: distH(LCA, f(x)) = 2,
distH(LCA, y) = 0. This represents a pure overprediction.
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Figure 5. Prediction example: distH(LCA, f(x)) = 0,
distH(LCA, y) = 1. This represents a pure underprediction.
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Figure 6. Hierarchical distances: iNaturalist19.
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Figure 7. Hierarchical distances: FGVC-Aircraft.
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Figure 8. Hierarchical distances: SimpleHierImageNet.
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10. Easy and hard OOD classes
For a more qualitative evaluation of the performance of Pro-
HOC, we look at which OOD classes get the best and worst
performance. Specifically, Tab. 7 shows the top three and
bottom three mean hierarchical distances for OOD classes
across each test set. We can see relatively large differences
between the easy and hard classes for all datasets, with Sim-
pleHierImageNet displaying the largest spread.

Figures 9 to 14 shows images from the ID and OOD
descendants for the top and bottom-performing classes in
Tab. 7. Note that these figures do not display the full hi-
erarchy or all the descendants of the particular nodes. For
FGVC-Aircraft, Figure 9 shows that the OOD sample of
Boeing 737 closely resembles the ID descendants, making
it easy to predict correctly. Conversely, for the hard class
shown in Figure 10, the ID descendants consist of smaller
aircraft, whereas the OOD sample is a large passenger plane
with few common visual features to the ID descendants,
making it challenging to predict accurately.

For the easy and hard examples of iNaturalist19 shown
in Figures 11 and 12 we again see that the ID and OOD
descendants in the easy example display strong visual sim-
ilarities. For the hard example, the flowers differ signif-
icantly in color and shape. Additionally, there are many
other flower species in the iNaturalist19 dataset, making
OOD samples as in Figure 12 challenging.

SimpleHierImageNet has both the easiest and the hardest
classes across all our datasets. The OOD samples for Os-
cine bird (Figure 13) get a low mean hierarchical distance of
0.337. We hypothesize that this class is easy because, as in
the easy examples above, its descendants share clear visual
features, such as body shape, tail, and beak. However, there
are also distinct visual features for distinguishing between
the descendants, such as colors and patterns, making it easy
to identify a sample as part of the group while distinguish-
ing it from the specific ID descendants.

On the opposite end of the spectrum is the Game equip-
ment class (Figure 14) with a mean hierarchical distance
of 4.217. While the model potentially could recognize the
round shapes of the balls, the images in these categories
tend to be cluttered with various objects and people, mak-
ing it challenging to identify common features. Addition-
ally, SimpleHierImageNet has, e.g., categories correspond-
ing to clothing that could confuse when there are people in
the images.

Table 7. The top and bottom hierarchical distances per class.

OOD Class Mean distH(f(x), y)

INATURALIST19

Genus: Enallagma 0.43
Genus: Viola 0.45
Genus: Aminata 0.45

Phylum: Angiospermae 2.17
Class: Aves 2.20
Genus: Lysimachia 2.66

FGVC-AIRCRAFT

Family: Boeing 737 0.53
Manufacturer: Douglas Aircraft Company 0.56
Family: Airbus A320 0.61

Manufacturer: McDonnell Douglas 1.40
Manufacturer: Fokker 1.99
Manufacturer: de Havilland 2.02

SIMPLEHIERIMAGENET

Oscine bird 0.34
Insect 0.48
Aquatic bird 0.51

Cat 3.23
Kitchen appliance 3.52
Game equipment 4.22
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Boeing 737

ID 737-300 ID 737-400 OOD 737-500 ID 737-600

Figure 9. Easy OOD: FGVC-Aircraft.

de Havilland

ID DH-82 ID DHC-1 OOD DHC-8-100 ID DHC-6

Figure 10. Hard OOD: FGVC-Aircraft.

Genus: Enallagma

ID Enallagma
carunculatum

OOD Enallagma
exsulans

ID Enallagma
signatum

ID Enallagma
vesperum

Figure 11. Easy OOD: iNaturalist19.
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Genus: Lysimachia

ID Lysimachia
arvensis

OOD Lysimachia
thyrsiflora

ID Lysimachia
borealis

ID Lysimachia
maritima

Figure 12. Hard OOD: iNaturalist19.

Oscine bird

ID Brambling OOD Junco ID Bulbul ID Indigo
bunting

Figure 13. Easy OOD: SimpleHierImageNet.

Game equipment

OOD Tennis ball ID Baseball ID Rugby ball ID Volleyball

Figure 14. Hard OOD: SimpleHierImageNet.
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Table 8. Comparing ProHOC with the ResNet50 backbone and the DINOv2 ViT-L/14 backbone. Results using the ResNet50 backbone
are gathered from Tab. 3. Excluding the oracle model, the best results are boldfaced.

Backbone BAccid ↑ BAccood ↑ MixBAcc ↑ BMHDid ↓ BMHDood ↓ MixBMHD ↓
SIMPLEHIERIMAGENET

Depth oracle ResNet50 79.7 72.5 76.1 0.82 1.05 0.93
Depth oracle DINOv2 ViT 88.9 81.1 85.0 0.40 0.79 0.60

ProHOC (CompProb) ResNet50 67.8 19.2 43.5 0.92 1.61 1.27
ProHOC (CompProb) DINOv2 ViT 85.8 18.6 52.2 0.40 1.50 0.95
ProHOC (EntCompProb) ResNet50 62.5 30.3 46.4 0.96 1.45 1.21
ProHOC (EntCompProb) DINOv2 ViT 81.5 34.6 58.0 0.42 1.30 0.86

INATURALIST19

Depth oracle ResNet50 72.4 75.9 74.2 0.85 0.82 0.83
Depth oracle DINOv2 ViT 76.8 85.6 81.2 0.58 0.48 0.53

ProHOC (CompProb) ResNet50 66.1 18.0 42.0 0.77 1.34 1.06
ProHOC (CompProb) DINOv2 ViT 72.2 23.7 47.9 0.49 1.12 0.81
ProHOC (EntCompProb) ResNet50 57.7 35.6 46.7 0.78 1.10 0.94
ProHOC (EntCompProb) DINOv2 ViT 60.1 49.6 54.9 0.54 0.82 0.68

FGVC-AIRCRAFT

Depth oracle ResNet50 84.7 67.6 76.1 0.49 0.67 0.58
Depth oracle DINOv2 ViT 85.6 61.0 73.3 0.42 0.82 0.62

ProHOC (CompProb) ResNet50 80.1 17.1 48.6 0.41 1.25 0.83
ProHOC (CompProb) DINOv2 ViT 67.4 27.0 47.2 0.54 1.16 0.85
ProHOC (EntCompProb) ResNet50 78.0 22.7 50.3 0.41 1.21 0.81
ProHOC (EntCompProb) DINOv2 ViT 55.6 44.8 50.2 0.63 0.96 0.80

11. ProHOC with DINOv2 ViT

All results in the main paper are obtained from the
ResNet50 architecture due to its widespread use in image
classification research. ProHOC, however, is architecture-
agnostic, requiring only that the architecture produces a
probability vector over classes, making it compatible with
any SOTA architecture. To demonstrate ProHOC’s trans-
ferability to other architectures and highlight the perfor-
mance gains from using a stronger image backbone, we
conduct experiments with ProHOC using image features
from a frozen DINOv2 ViT-L/14 backbone [23]. In this
setup, the multi-depth models are replaced with indepen-
dent MLPs that take DINOv2 features as input. For Simple-
HierImageNet and iNaturalist19, we use four-layer MLPs
with a hidden dimension of 512 and a batch size of 512.
For FGVC-Aircraft, we use single-layer classification heads
and a batch size of 128 due to the smaller dataset size. All
models are trained for 300 epochs with an initial learning
rate of 0.01, decayed to zero at the end of training using a
cosine schedule.

The results from training ProHOC with DINOv2 ViT-
L/14 are shown in Tab. 8. We see big performance im-
provements compared to the ResNet50 models on Simple-
HierImageNet and iNaturalist19, indicating that ProHOC
can leverage the capacity of a stronger backbone model.
The EntCompProb model again outperforms CompProb

with the DINOv2 backbone. On FGVC-Aircraft, the re-
sults from ResNet50 and DINOv2 are closer. Interestingly,
the ResNet50 oracle model outperforms DINOv2 for OOD
classification, suggesting it captures features relevant for
OOD predictions that DINOv2 does not. Nevertheless, the
overall performance on FGVC-Aircraft remains similar be-
tween ResNet50 and DINOv2.

Note that using a pre-trained backbone like DINOv2 for
the hierarchical OOD task changes the preliminaries of the
problem. Unlike the ResNet50 models, which encounter
OOD data only at test time, the DINOv2 backbone has been
pre-trained on all our evaluated datasets (including the OOD
classes), albeit without labels. This gives DINOv2 an in-
herent advantage. Therefore, the key takeaway from these
results is not a direct comparison between the ResNet50
and ViT architectures, but that ProHOC can benefit from
the stronger data representations provided by DINOv2.
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12. ID performance of multi-depth networks
Table 9 shows the ID accuracies of the multi-depth networks
used to obtain the results in Tab. 3. Table 9 also shows the
number of nodes assigned to each network. As expected,
we see a strong correlation between depth and accuracy.
Note that the leaf accuracy for iNaturalist19 differs from
the value in Tab. 3 as Tab. 9 shows unbalanced accuracies.

Table 9. ID accuracies for the multi-depth networks.

Depth d # classes at d Acc

INATURALIST19

1 3 98.7
2 15 97.6
3 58 93.1
4 239 88.9
5 672 78.9
6 721 75.8

FGVC-AIRCRAFT

1 30 94.3
2 63 90.3
3 80 84.7

SIMPLEHIERIMAGENET

1 2 98.3
2 5 97.8
3 43 95.9
4 54 92.5
5 122 88.2
6 240 85.9
7 402 82.4
8 445 80.7
9 471 80.2

10 512 79.6
11 518 79.7

13. SimpleHierImageNet
As discussed in Sec. 5.1, tieredImageNet in its original form
is not well-suited for OOD detection in class hierarchies due
to several issues. First, it includes sibling classes that do not
share common visual features (e.g., analog clock and digital
clock), as well as visually similar classes that are separated
by large hierarchical distances (e.g., laptop computer and
computer keyboard). Additionally, it contains many narrow
branches, such as parent nodes with only two children (e.g.,
duck), making it difficult to identify common features asso-
ciated with the parent.

To summarize the desirable characteristics of a hierar-
chy suited for hierarchical OOD detection, we consider the
following criteria:
• Siblings should share visual features.
• Visually similar classes should be separated by small hi-

erarchical distances.
• Internal nodes should have enough children to enable

learning of common visual features.

With these criteria in mind, we have reorganized parts
of the tieredImageNet hierarchy to form SimpleHierIma-
geNet, a hierarchy better suited for hierarchical OOD de-
tection. Specifically, we have pruned internal nodes and
moved parts of the hierarchy to satisfy the listed criteria.
Additionally, a few classes from tieredImageNet are com-
pletely omitted because they lack clear visual connections
to other classes in the tree, making them difficult to place
within the hierarchy while satisfying our requirements. The
omitted classes are
• n06359193: website
• n03314780: face powder
• n04192698: shield
• n02840245: binder
• n03657121: lens cap
• n04423845: thimble
• n04507155: umbrella
• n03467068: guillotine
• n03544143: hourglass
• n04355338: sundial.

As a result of this curation, we go from 234 internal
nodes in the original tieredImageNet to 66 internal nodes
in SimpleHierImageNet. The full specification of Simple-
HierImageNet is available at https://github.com/
walline/prohoc.
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Table 10. The number of samples in the respective datasets.

# ID
train

# ID
test

# OOD
test

FGVC-Aircraft 5333 2667 1332
SimpleHierImageNet 665877 25900 104452
iNaturalist19 156768 28078 12659

14. Dataset details
In Tab. 10, we specify the number of samples in each
dataset. The OOD test set for SimpleHierImageNet is large
because it is expanded using the OOD classes from the orig-
inal ImageNet training split. The OOD subsets used in the
experiments are listed in Tabs. 11 to 13 and are also defined
at https://github.com/walline/prohoc. These
listed classes represent leaf nodes in the original datasets
but subsets of these combine to form OOD data associated
with higher levels of the tree.

As a last post-processing step, after defining the ID and
OOD subsets, we prune the ID hierarchy by removing nodes
with only one child. Specifically, we connect the single
child directly to the grandparent and remove the intermedi-
ate node. The motivation for this pruning is that we consider
it unrealistic for the model to learn the difference between a
node and its only child.

Table 11. OOD categories for FGVC-Aircraft.

v-737-500
v-737-700
v-747-400
v-767-200
v-767-300
v-767-400
v-A319
v-A330-200
v-A330-300
v-A340-200
v-A340-300
v-A340-500
v-A340-600
v-Challenger_600
v-DC-6
v-DC-9-30
v-DHC-8-100
v-DHC-8-300
v-E-195
v-Fokker_50
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Table 12. OOD categories for SimpleHierImageNet as WordNet IDs.

n01534433
n02088094
n02088238
n02088364
n02088466
n02088632
n02089078
n02089867
n02089973
n02090379
n02090622
n02090721
n02091032
n02091134
n02091244
n02091467

n02091635
n02091831
n02092002
n02092339
n01855672
n02012849
n02093991
n02017213
n02096177
n01688243
n02098105
n01728920
n02099429
n01744401
n02108422
n02106166

n02110185
n02123394
n02397096
n02128925
n02422106
n02481823
n02487347
n01494475
n02643566
n02169497
n02256656
n02279972
n07768694
n03207941
n04542943
n03980874

n02883205
n03866082
n02794156
n04548280
n03773504
n09246464
n04515003
n02676566
n07715103
n03394916
n07718472
n03804744
n03642806
n02979186
n04409515
n03179701

n03662601
n03673027
n02814533
n03670208
n03345487
n04560804
n03770679
n04604644
n02793495
n02727426
n03089624
n02825657
n04398044
n04285008
n04370456
n02410509

Table 13. OOD categories for iNaturalist19 with IDs as specified in iNaturalist19.

nat0996
nat0997
nat0998
nat0999
nat1000
nat1001
nat1002
nat1003
nat1004
nat1005
nat1006
nat1007
nat1008
nat1009
nat0958
nat0963
nat0964
nat0965
nat0966
nat0967
nat0968
nat0969
nat0970
nat0971
nat0972
nat0917
nat0910
nat0668
nat0669
nat0684
nat0688
nat0469
nat0481
nat0486

nat0490
nat0491
nat0492
nat0493
nat0494
nat0495
nat0496
nat0497
nat0498
nat0499
nat0500
nat0501
nat0502
nat0448
nat0454
nat0338
nat0344
nat0792
nat0776
nat0777
nat0778
nat0779
nat0780
nat0781
nat0782
nat0783
nat0784
nat0785
nat0786
nat0787
nat0788
nat0732
nat0762
nat0765

nat0400
nat0881
nat0882
nat0883
nat0884
nat0885
nat0886
nat0887
nat0888
nat0889
nat0890
nat0866
nat0867
nat0836
nat0565
nat0567
nat0621
nat0622
nat0623
nat0628
nat0596
nat0597
nat0598
nat0599
nat0600
nat0601
nat0602
nat0603
nat0604
nat0605
nat0606
nat0607
nat0608
nat0609

nat0610
nat0611
nat0612
nat0613
nat0614
nat0615
nat0616
nat0617
nat0618
nat0619
nat0620
nat0583
nat0591
nat0388
nat0363
nat0543
nat0515
nat0644
nat0645
nat0646
nat0647
nat0648
nat0649
nat0650
nat0651
nat0652
nat0653
nat0654
nat0655
nat0803
nat0810
nat0818
nat0830
nat0417

nat0431
nat0434
nat0723
nat0891
nat0975
nat0190
nat0166
nat0201
nat0257
nat0258
nat0259
nat0260
nat0261
nat0262
nat0263
nat0264
nat0265
nat0266
nat0212
nat0213
nat0214
nat0215
nat0216
nat0217
nat0218
nat0219
nat0220
nat0221
nat0222
nat0223
nat0235
nat0236
nat0237
nat0238

nat0239
nat0240
nat0241
nat0242
nat0243
nat0244
nat0245
nat0246
nat0247
nat0248
nat0249
nat0250
nat0251
nat0252
nat0253
nat0254
nat0255
nat0256
nat0224
nat0225
nat0226
nat0227
nat0228
nat0229
nat0230
nat0231
nat0232
nat0233
nat0234
nat0202
nat0203
nat0204
nat0205
nat0206

nat0207
nat0208
nat0209
nat0210
nat0211
nat0318
nat0296
nat0297
nat0298
nat0299
nat0300
nat0301
nat0302
nat0303
nat0304
nat0305
nat0306
nat0282
nat0283
nat0284
nat0285
nat0286
nat0287
nat0288
nat0289
nat0290
nat0291
nat0292
nat0293
nat0294
nat0295
nat0315
nat0012
nat0013

nat0014
nat0015
nat0016
nat0017
nat0018
nat0019
nat0020
nat0021
nat0022
nat0150
nat0068
nat0069
nat0070
nat0071
nat0072
nat0073
nat0074
nat0075
nat0076
nat0077
nat0078
nat0079
nat0043
nat0044
nat0045
nat0046
nat0047
nat0048
nat0049
nat0050
nat0051
nat0052
nat0053
nat0054

nat0055
nat0056
nat0057
nat0058
nat0059
nat0060
nat0061
nat0062
nat0063
nat0064
nat0065
nat0066
nat0067
nat0032
nat0038
nat0000
nat0004
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