
S2Gaussian: Sparse-View Super-Resolution 3D Gaussian Splatting
- Supplementary Material

1. More Ablation Studies

Rendering Speed. As shown in Tab. 1, our method main-
tains the high rendering speed characteristic of Gaussian
splatting frameworks. While the FPS is slightly lower than
that of 3DGS and FSGS due to the inclusion of more Gaus-
sian primitives for representing detailed high-resolution
scenes, our approach has been demonstrated to significantly
outperform existing methods, effectively addressing sparse
views and clarity deficiencies simultaneously.

Table 1. Rendering speed comparison with NeRF-SR [6], 3DGS
[3], and FSGS [9].

Method NeRF-SR 3DGS FSGS+SRGS S2Gaussian

FPS <1 438 428 387

Number of Pseudo Views. We also performed experiments
to investigate the effect of the number of pseudo views and
the results of which are presented in Tab. 2. It is observed
that incorporating 72 pseudo views per scene, equivalent
to three times the number of known views yields better
performance. While more pseudo-views would introduce
more potential improper supervision and thus observe per-
formance degradation. Based on these results, we have cho-
sen pseudo views amounting to three times the number of
known views as our default setup.

Table 2. Ablation study of the number of pseudo views on Mip-
NeRF 360 ×4 (24 known views).

Pseudo Views PSNR↑ SSIM↑ LPIPS↓ FID↓

24 21.39 0.632 0.351 61.23
48 21.87 0.674 0.311 52.63
72 22.05 0.687 0.296 43.51
96 21.96 0.682 0.298 45.65

Effect of α and λ in Gaussian Shuffle. In Fig. 1, we illus-
trate the impact of α on the densified 3D scenes. A larger
α value enables the sub-Gaussians to disperse more widely,
which facilitates high-resolution scene fitting but also exac-
erbates scene degradation. Based on this trade-off, we set
α = 0.5, as higher values lead to noticeable quality deteri-
oration, undermining our objectives.

Additionally, we also explore the impact of λ on densi-
fied 3D scenes. Since the visual changes are minimal, we
calculated the MSE values before and after the Gaussian
Shuffle to quantify the effect. As shown in Table 3, too large
or too small λ can lead to serious damage to the scene while
the values between 1.8 and 2.0 are relatively optimal, hence
we set λ = 1.9 which minimizes the changes to the scene,
reducing the possible corruption of the 3D representation.

Table 3. Ablation study of λ, where MSE is calculated to quantify
the effects before and after Gaussian Shuffle.

λ 1.0 1.8 1.9 2.0 3.0

MSE 95.7 43.9 42.8 43.6 148.6

Effect of ε in 3D Robust Optimization. As shown in Tab.
4, setting ε too small diminishes its ability to modulate up-
date trends, while setting it too large weakens control over
undesired gradients, reducing its effectiveness in suppress-
ing their influence. Consequently, we set ε to 0.1 as the
default value in all experiments.

Table 4. Ablation study of ε on Mip-NeRF 360 ×4 (24 views).

ε PSNR↑ SSIM↑ LPIPS↓ FID↓

0.01 21.29 0.631 0.347 59.69
0.05 21.79 0.666 0.325 44.12
0.1 22.05 0.687 0.296 43.51
0.2 21.85 0.675 0.316 47.28
0.3 21.63 0.657 0.311 46.37

2. More Experimental Results

Since most 2D super-resolution models such as ResShift [8]
are typically trained on × 4 data, we primarily experiment
on 4 × super-resolution tasks in the maintext. In the Suppl.
Mat., we further performed experiments 2 × and 8 × super-
resolution tasks. Specifically, for the 2 × super-resolution
task we concatenate a bicubic interpolation downsampling
operation after ResShift to get the × 2 results, and for the
8 × super-resolution task we concatenate a bicubic interpo-
lation upsampling operation after ResShift to get the × 8
results.
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Figure 1. Visual comparison with different α in Gaussian Shuffle.

Table 5. Quantitative comparison on Blender ×2 (8 views), LLFF ×2 (3 views), and Mip-NeRF360 ×2 (24 views). The best, second
best, and third best entries are marked in red, orange, and yellow, respectively.

Method Blender ×2 (8 views) LLFF ×2 (3 views) Mip-NeRF 360 ×2 (24 views)
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

3DGS [3] 22.47 0.856 0.109 27.54 14.84 0.371 0.368 94.81 17.11 0.424 0.382 72.32
SRGS [2] 24.08 0.883 0.085 21.28 19.26 0.587 0.227 58.63 19.02 0.509 0.414 69.32
Mip-Splatting [7] 24.18 0.887 0.074 21.48 15.58 0.430 0.334 90.71 17.68 0.469 0.366 64.61
FSGS [9] 23.15 0.866 0.091 29.06 19.92 0.603 0.149 45.79 19.72 0.529 0.373 87.55
FSGS [9]+SRGS [2] 23.98 0.880 0.099 20.63 20.47 0.622 0.133 44.56 19.91 0.536 0.422 82.04
S2Gaussian (Ours) 24.58 0.891 0.071 19.65 20.98 0.649 0.119 40.15 22.53 0.712 0.280 42.56

Table 6. Quantitative comparison on Blender ×8 (8 views), LLFF ×8 (3 views), and Mip-NeRF360 ×8 (24 views). The best, second
best, and third best entries are marked in red, orange, and yellow, respectively.

Method Blender ×8 (8 views) LLFF ×8 (3 views) Mip-NeRF 360 ×8 (24 views)
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

3DGS [3] 18.86 0.818 0.210 68.67 10.68 0.211 0.635 160.11 15.06 0.310 0.567 125.93
SRGS [2] 22.25 0.864 0.126 34.28 18.65 0.512 0.387 125.32 18.09 0.435 0.502 106.75
Mip-Splatting [7] 22.08 0.863 0.159 51.86 15.72 0.449 0.536 142.94 18.29 0.459 0.517 94.95
FSGS [9] 19.53 0.818 0.190 72.35 16.63 0.446 0.412 143.85 17.29 0.407 0.500 117.17
FSGS [9]+SRGS [2] 22.43 0.864 0.119 31.68 19.30 0.530 0.362 100.37 19.43 0.477 0.520 103.42
S2Gaussian (Ours) 23.46 0.869 0.112 29.27 20.15 0.615 0.219 75.28 21.26 0.612 0.345 58.92

Quantitative Evaluation. Table 5 and Table 6 presents
quantitative comparison results for 2 × and 8 × sparse-
view super-resolution novel view synthesis tasks on the
Blender [5], LLFF [4], and Mip-NeRF 360 datasets [1].
It can be observed that our method still achieves state-of-
the-art performance, particularly on the more challenging
8 × super-resolution task, where S2Gaussian outperforms
FSGS+SRGS by 1.83 dB in PSNR, while reducing FID by
nearly half.
Qualitative Evaluation. We also demonstrate visual com-
parisons in Fig. 2 and Fig. 3. It can be observed that exist-
ing techniques struggle to capture underlying scene details,
even on 2 × super-resolution tasks. In contrast, our method
accurately reconstructs fine-grained, intricate details in both
synthetic and real-world large-scale scenes, demonstrating
the reliability and practicality of our method in realistic ap-
plications.
More Visual Comparison. Additionally, we provide vi-
sual comparisons of the rendering results across continu-
ous viewpoints to further demonstrate the superiority of our

method in a more comprehensive and thorough manner. As
shown in Fig. 4, our method reconstructs 3D scenes with
more structurally accurate and detail-rich representations,
consistently across different viewpoints. Especially its su-
periority becomes even more pronounced in large-scale,
complex real-world scenes (the third column), demonstrat-
ing valuable practicality and applicability.

3. Impact, Limitation, and Future Work

S2Gaussian makes a substantial contribution to advancing
3D scene reconstruction by effectively addressing the chal-
lenges posed by sparse and low-resolution views. Its capa-
bility to generate geometrically precise and richly detailed
reconstructions makes it a valuable tool for real-world ap-
plications, particularly where high-quality input views are
limited. Furthermore, by reducing reliance on dense and
high-resolution views, S2Gaussian lowers the entry barri-
ers for organizations and researchers with constrained re-
sources. The framework’s innovative use of Gaussian Shuf-
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Figure 2. Qualitative comparisons on Blender ×2 (8 views), LLFF ×2 (3 views), and Mip-NeRF360 ×2 (24 views).

Ground Truth FSGS+SRGS OursFSGSMip-Splatting3DGS

Figure 3. Qualitative comparisons on Blender ×8 (8 views), LLFF ×8 (3 views), and Mip-NeRF360 ×8 (24 views).

fle and dual-stage optimization offers fresh insights into 3D
Gaussian Splatting, paving the way for further advance-
ments in reconstructing complex 3D scenes from more chal-
lenging input views.

One potential limitation of our current method is its fo-
cus on the reconstruction of static 3D scenes and is not
yet well-suited for handling dynamic time-varying scenes.
While the framework demonstrates robust performance for
static environments, extending its capabilities to reconstruct
dynamic 4D scenes where temporal variations and mo-
tion need to be accurately captured—remains an uncharted
yet promising direction. Integrating our approach into the
emerging paradigm of 4D Gaussian Splatting could provide
a potential solution, enabling it to model both spatial and
temporal dynamics with sparse and low-resolution time-

varying views.
Moving forward, we envision S2Gaussian as a powerful

tool capable of unlocking diverse applications in real-world
3D scene reconstruction. As we chart the course ahead, one
avenue of exploration involves extending our method to dy-
namic 4D scene reconstruction, enabling more immersive
rendering with broad applications in interactive AR/VR en-
vironments and dynamic navigation in robotics. In essence,
our journey continues not only in refining our method but
also in pushing the boundaries of what 3DGS can offer to
the broader field of 3D vision.



Figure 4. Visual comparison of consecutive views between combined method FSGS+SRGS (left) and our proposed S2Gaussian (right).
Our method exhibits significantly superior performance in complex real-world scenes.
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