4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion

Supplementary Material

1. Additional Implementation Details

1.1. Base video model training

The base video model is pretrained on a dataset comprising
1.2 million images and 238k hours of video, each paired
with a corresponding text caption. This dataset includes
a subset of 3D videos with a distribution similar to pop-
ular open-source datasets such as RealEstate and MvIma-
geNet. During training, pseudo-generated videos are cre-
ated on the fly from all videos in the dataset, excluding the
3D videos. We use the AdamW optimizer with a cosine
learning rate scheduler. The batch size for training the base
model is 1,152, while for the 4D model, it is 48. Due to
limited compute resources, our current model is small. For
masked video model training, we keep the first K frames of
the video, where K is uniformly sampled from [0, 4].

1.2. Implementation details of ablation study

We compared different baseline variants to analyze our ap-
proach. Below, we provide details for each method corre-
sponding to the columns in Fig 7.

Sequential w/o training. We sequentially interleave cross-
view and cross-time attention, as described in Equation 5.
All parameters in the attention layers are directly inher-
ited from the base video model without additional training.
We observe that this variant produces noisy outputs lacking
meaningful structure.

Parallel w/o training, hard sync. We perform inference
using the proposed architecture without training the syn-
chronization layers. For hard synchronization, we average
the token updates, i.e.
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This version generates some content with elements from the
input video, but it remains highly noisy.
Parallel w/o training, soft sync. The soft synchronization
is implemented as weighted averaging,
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Here, w; represents the weight, which gradually increases
with the layer depth, specifically defined as w; = 0.1 + % .
0.4. This approach produces results with more discernible
content compared to hard synchronization.

Sequential trained. The sequential architecture is trained
following the same procedure as our proposed approach.
We experimented with two variants: finetuning only the

cross-time attention and finetuning only the temporal atten-
tion. Our findings indicate that finetuning temporal atten-
tion results in more stable outcomes. Therefore, for brevity,
we report results only for the version where cross-time at-
tention is finetuned.

Parallel hard sync. The variant of our proposed method
employing hard synchronization.

Parallel soft sync w/o Objaverse. A variant of our
proposed method with soft synchronization, without fine-
tuning on animated 4D Objaverse data.

2. Additional Analysis

Ablation of importance of different synchronization lay-
ers. In the paper, we included Figure 3, which analyzes
the strength of synchronization at different layers during in-
ference. We observed that the update strength increases in
deeper layers of the network. Additionally, we conducted
an ablation study (see Table 1) where we trained the 4D
model after removing either the first eight (33%) or the
last 33% of synchronization layers, using the same train-
ing setup as the original model. According to the Dust3R-
confidence metric, the model adapts to removing these lay-
ers, with both scenarios yielding similar results. However,
the overall quality is worse compared to the full model.
How does mixed data training affect the results? The
4D video model can be trained alternatively with a mix of
pseudo-4D and Objaverse data, instead of sequentially pre-
training on pseudo-4D and finetuning on Objaverse. How-
ever, empirically, we were unable to find a suitable combi-
nation that led to improvements. As shown in Table 1, fine-
tuning the pretrained model with a 1:2 mix of pseudo-4D to
Objaverse led to a continuous decline in Dust3R-confidence
and slightly worse overall metrics compared to fine-tuning
with Objaverse alone. By inspecting the generated videos,
we believe this is because the pseudo data distracted the
model, causing it to focus on 2D rather than true perspective
transformations, reducing quality. To scale up, we suggest
improving the base video model and incorporating larger
synthetic or real 4D datasets.

Generate long duration videos. Our model is autoregres-
sive and can generate videos longer than 2s. In the sup-
plementary material, we provided samples with 120 frames
(5s), reaching the typical duration of videos generated by
mainstream models. However, since our model processes
only 8x8 frames at a time, it has limitations in maintaining
long-term consistency. As shown below, the model "for-
gets" the side appearance of the pillow toy from the first
frame, leading to errors in later frames. We believe ad-
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Pseudo 4D pretrain; Objaverse ft for 3k iters ‘ 41.0 334 25.7
Drop first 33% sync. layers 40.2 32.6 24.7
Drop last 33% sync. layers 40.3 32.8 25.1
Pseudo 4D pretrain; Objaverse ft for 10k iters 40.9 332 255
Pseudo 4D + Objaverse ft for 1k iters 40.7 33.1 253
Pseudo 4D + Objaverse ft for Sk iters 40.5 33.0 252
Pseudo 4D + Objaverse ft for 10k iters 40.4 32.8 25.1

Table 1. Additional Ablation Studies: Due to space constraints,
we report only the Dust3R-confidence metric. Even though the
numeric difference in the ablations is small, we observed signifi-
cant quality degradation in a few tested samples.

vancements in long-context conditioning for video gener-
ation could address this issue, though we did not focus on
it, as it is somewhat orthogonal to this work.

Figure 1. Failure case of maintaining long-term consistency.

3. Deformable 3D GS Reconstruction Details

Using generated 4D videos with multi-view frame grids,
we apply a reconstruction method to produce an explicit
3D representation, i.e., deformable 3D geometric structures
(GS).

Canonical 3D representation. We use 3D Gaussian
Splats [1] to represent the canonical shape of the dynamic
scene. This representation consists of a set of 3D Gaussian
points defined by their 3D position, orientation, scale, opac-
ity, and RGB color. The 3D Gaussian Splats are rendered
by projecting the Gaussian points onto the image plane and
aggregating pixel values using a NeRF-like volumetric ren-
dering equation. In our implementation, we find that con-
straining the Gaussians to be isotropic effectively reduces
artifacts when viewing the 3D representation from view-
points distinct from the training perspectives.

Deformation field. To model a 4D scene, we use a de-
formation field to represent the offsets of the 3DGS. This
deformation field is implemented as an MLP, which takes
the 3D position of a point and time as input and outputs a
3D displacement offset.

Initialize canonical 3D GS with 3D dense tracking.
While the input freeze-time video may appear visually plau-
sible, it is not truly geometrically accurate, particularly in
the background regions. Directly optimizing 3D GS us-
ing these frames as ground truth results in significant ar-
tifacts. The most noticeable issue is the noisy reconstruc-
tion of background regions, which fail to separate cleanly

from the foreground. In our preliminary exploration, we
tested state-of-the-art feedforward reconstruction methods,
including Dust3R [4] and Splatt3R [3]. However, in most
cases, only the foreground regions could be reliably recon-
structed, while the background remained noisy and entan-
gled with the foreground. We attribute this limitation to the
quality of the video model used to generate the inputs. In
the long term, this issue could potentially be addressed by
employing a higher-quality video model. At this stage, we
instead use a recent 3D dense tracking method [2], which
performs pixel-wise tracking to aggregate 3D points from
various keyframes of the freeze-time video. These points
are aligned towards a central frame, whose coordinates are
treated as the canonical frame.

The advantage of switching to 3D tracking is that it does
not require the scene to be static, allowing it to handle
multi-view inconsistencies in the generated videos by treat-
ing them as non-rigid deformations. Furthermore, 3D track-
ing leverages monocular depth estimation as input, preserv-
ing the clean foreground/background separation provided
by the estimated depth map. This results in a visually more
coherent and appealing outcome.

Removing boundary floaters. 3D tracking often produces
outlier points along depth boundaries, a common artifact in
monocular depth estimation. To eliminate these ’floaters,’
we apply a rendering loss to optimize the opacity of each
point, effectively pruning points that cause visual artifacts.

Specifically, given a set of aggregated 3D points from
dense tracking, we know each point’s 3D position in the
frame coordinates of each frame of the input freeze-time
video. This allows us to use the differentiable 3DGS ren-
derer to re-render each input frame and compute the loss.
Furthermore, since the points are modeled as isotropic
Gaussians without orientation and are already in the frame
coordinate system, we avoid the need to estimate camera
extrinsics at this stage. This approach enhances robustness
against multi-view inconsistencies in the input video.

Temporal deformation with view-dependent compensa-
tion. The next step involves fitting a temporal deformation
field to animate the canonical 3DGS to follow the motion
in the input 4D video. However, due to imperfections in the
multi-view consistency of the 4D video—an issue inherited
from the input freeze-time video—directly optimizing the
temporal deformation field would lead to noisy reconstruc-
tions, mirroring the challenges previously discussed.

To address this issue, we augment the temporal deforma-
tion with additional view-dependent deformation to com-
pensate for inconsistencies in the generated frames across
different views. Specifically, to re-render a point on the in-
put frame Z;; of the input frame grid, where ¢ and j repre-
sent the indices of view and time respectively, the deforma-
tion offset Ap;; for each point p in canonical space is now
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Which video has more realistic motion? Take into consideration the magnitude, smoothness, and consistency of the motion. Pay close attention to deformed limbs of humans and animals and unnatural
deformations.
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Figure 2. A screenshot of the interface for user study.

computed as: 4. Which video has an object of a better, more

Apij = Ap; + Ap}, 3) realist shape? That is the video in which the

where Ap} represents the temporal deformation computed main object I}as the most natu.ral shape, again

by an MLP, and Ap) is the view-dependent deformation es- pazmg. attelntlog to defornlle;d ?mbs (,)f humans
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. . . 6. Which video is most dynamic? The video that

deformation has also been employed in 4Real [5]; however, ins th . Pl Keen in mind
in our approach, the view-dependent deformation is pre- cli)nta;lns t.e most Ilno.tlon. fel?se eepdm min

dicted from dense 3D tracking rather than optimized using t .att ese 1s several views of the same dynamic

rendering loss, making it more robust. video, played one after the other, so ignore all

’ camera movement and focus solely on object

4. User study details movement. Please exclude from consideration

any random limb deformations.
The user study shown in Fig. 2 is conducted with 10 eval- 7. Which video is better following the text de-

uators per video pair. During each session, evaluators were
presented with two anonymized videos with an interface as
shown in Fig. 2. The evaluators were given the following
instructions:

You are shown a description of a video and two
different 3D videos generated by Al based on
this description. Your task is to answer 7 ques-
tions regarding the quality of these videos. Please
pay close attention to instructions and answer as
thoughtfully as you can. The video shows several
consecutive views of the same dynamic object.

1. Which video has more realistic motion? Take
into consideration the magnitude, smoothness,
and consistency of the motion. Pay close at-
tention to the deformed limbs of humans and
animals and unnatural deformations.

2. Which video has the highest quality fore-
ground?

3. Which video has the highest quality back-
ground?

scription? That is which video reflects all the
aspects included in the text description

Finally, if there is no significant difference in your
opinion send the video to junk.
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