A. Additional Details

A.1. Visualization of the Unlearnable Examples

Figure 3 provides a visualization of unlearnable examples
synthesized using the UE methods on an example image
from the Oxford Flowers-102 dataset.

A.2. Augmentation Strategies

A} includes augmentation strategies for both the image and
text modalities.

For the image modality, the augmentation pipeline ap-
plies the following strategies in sequence: PlasmaContrast
and PlasmaBrightness from Tormentor [21], which increases
diversity of augmented samples while preserving important
features, channel shuffling, which randomly permutes the
color channels, and TrivialAugment [20], which is known to
improve model training generalization. Figure 4 shows the
visualizations of the individual image augmentation strate-
gies.

The text modality augmentation strategies primarily in-
volve adding a small uniform noise, masking random tokens,
randomly flipping embedding vectors, as well as random
rotation with a small angle. These augmentation operations
are applied only during training to help improve the model’s
robustness against UEs.

The specific configurations for both modalities are shown
in Tab. 5.

A.3. The overall training algorithm for A3
B. Experimental Setup
B.1. Datasets

We evaluated A’ on 7 datasets, which are widely used in the
literature related to prompt learning. Below, we will briefly
summarize these datasets, and provide example images of
some datasets in Figure 5.

* The ImageNet dataset [6] is a large-scale visual database
containing over 1.2 million labeled images across 1000
categories. It is widely used for image classification and
object detection tasks.

* The Caltech-101 dataset [8] is an image classification
dataset provided by the California Institute of Technology.
It consists of 101 object categories, with each category
containing around 40 to 800 images. It is commonly used
for object recognition and image classification research.

* The Oxford Pets dataset [23] contains images of 37 pet
species, with over 7,349 images. The dataset is aimed at
pet species recognition, and the images vary in terms of
pose, background, and lighting conditions.

¢ The Oxford Flowers dataset [22] consists of 102 flower
categories, with each category containing around 40 to
258 images. It is used for flower classification tasks, and

the images often have varied backgrounds and lighting,
making it a challenging dataset.

* The Food-101 dataset [3] contains 101 food categories,
each with about 1,000 images. It is designed for food
classification research, featuring a wide variety of food
images such as pizza, burgers, sushi, efc.

* The SUN-397 dataset [37] is a large-scale dataset designed
for scene classification tasks. It contains 397 scene cat-
egories, covering a wide range of environments such as
beaches, forests, highways, and urban settings. The dataset
includes over 100,000 images in total, with approximately
200 images per category.

* The UCF-101 dataset [31] is a video dataset containing
101 action categories, with approximately 100 video clips
per category. It is commonly used for action recognition
tasks and includes a wide range of activities, such as run-
ning, swimming, dancing, efc.

B.2. Methods for Learning from UEs

In our experiments, we compared several existing learning

strategies, such as Grayscale, JPEG compression, adversar-

ial training (AT), and UEraser. This sections will provide a

detailed explanation of the methods and parameter settings.

* Adversarial Training (AT) [19] is a method that gener-
ates adversarial examples during training and use them to
train the model, and it is traditionally shown to improve
model robustness against adversarial attacks. By exposing
the model to adversarial perturbations during training, the
trained model may be less sensitive to small perturbations
in the input data. It is also shown to be effective to learn
from UEs. Our AT uses a PGD-based adversarial training
algorithm on top of the standard CoCoOp training algo-
rithm, where the perturbation budget is 8 /255 under the
£~ norm, the PGD step size is 2/255, step count is 7, and
the number of training epochs is 20.

» Grayscale conversion, from [16], is a simple image pro-
cessing where only intensity (brightness) information is
retained, and color details are discarded. As many UEs
form strong shortcuts based on color information, it helps
by simplifying the input images and reducing the impact
of color-based adversarial manipulations. In our experi-
ments, we converted the images to grayscale, and used the
standard CoCoOp training algorithm with 20 epochs.

* JPEG is a widely-used lossy image compression format
which typically introduces blocking and blurry compres-
sion artifacts. Based on the fact that perturbations are
often high-frequency and fine-grained, it may be an ef-
fective way to disrupt perturbations from UEs. Applying
JPEG compression helps by degrading the quality of UEs,
making perturbations less effective, while the underlying
content remains mostly intact. We follow [16] and used a
JPEG compression rate of 10, but adapted it to the standard
CoCoOp prompt learning.
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Figure 3. The visualization of unlearnable examples and their respective perturbations on an example image from the Oxford Flowers-102
dataset.

Table 5. Augmentation strategies for text and image modalities of A®.

Modality | Augmentation Strategy Probability Configuration

Uniform Noise 0.2 Noise ~ U(—0.05,0.05)
Text Mask 1.0 Mask rate = 0.2

Flip 0.2 —

Rotation 0.2 Angle ~ U(—10°,10°)

Plasma Brightness 1.0 Roughness = (0.3, 0.7), Intensity = (0.5, 1.0)
Image Plasma Contrast 1.0 Roughness = (0.3, 0.7)

Channel Shuffle 0.5 —

Trivial Augment 1.0 —

Clean PlasmaBrightness PlasmaContrast ChannelShuffle TrivialAugment A3(Image)

are less competitive than those in Table 3, justifying our
choice of CoCoOp for A®.

Table 6. Prompt learning methods. (Caltech-101, RN-50, 16-shot)

Figure 4. Visualization for the image augmentation strategies in A’

for an example Caltech-101 image. Methods EM REM HYPO LSP AR OPS
8/255  8/255  8/255  1.30  1.00 1

CoOp 70.10 50.63 44.81 4122 4737 8545

» UEraser employs a sequence of image augmentations and +Text 80.04 81.62 79.69 7975 8089 88.50
loss-maximizing augmentations. We use the standard hy- +Image | 89.57 8931 88.60 8832 90.15 92.48
perparameters from the official implementation [25], and +Full 0395 9347 9289 9360 9228 93.04

integrate it with the CoCoOp training algorithm by apply-

. . . . ProDA 72. 1.1 46.2 44. 77 .
ing UEraser augmentations to the images before feeding - 68 51164629 0550 86.03

, fText | 81.56 82.13 8048 80.87 81.06 89.86
them to the image encoder. +Image | 91.89 90.67 90.03 89.74 90.26 92.71
fFull | 94.16 9400 9342 9405 9377 93.65

KgCoOp | 68.33 45.82 40.26 3853 4496 8347

C. Additional Results

C.1. Using other PL algorithms for A’ +Text 79.68 80.09 79.01 79.20 80.16 87.42
+Image 88.91 89.14 88.00 88.48 89.75 91.07
In Table 6, we have conducted further experiments extending +Full 9323 9298 92.15 9193 92.16 92.82

other PL methods with A%, following the ablation analyses in
Table 3. Notably, the results of adopting other PL. methods



Algorithm 1 The overall training algorithm for A%

1: function A3(training set Dy, image augmentation policies A;y, text augmentation policies Ay, image encoder
fim» text encoder fi, meta-net m, learning rate «, batch size B, number of training iterations N, number of im-
age augmentations Kj,, number of text augmentations Ky, similarity function sim, all trainable weights ¢ =

[meta-net weights 1, prompt embeddings V)

22 fornell,...,N]do

3: B < mini-batchpg(Dy.) > Sample a mini-batch from D,
4: for x(™) 4(™) ¢ B do > For each image in mini-batch. ..
s: forie[l,..., Kin| do

6: igm) + aim(%;), where @y ~ Aim > Sample Kjy, image augmentations
7: forj€[1,..., K| do

8: Eﬁm)  ax([Vk mod M, €y, ]), Where ax ~ Ay > Sample Ky text augmentations ...
9: f;m) — E;m) + m¢()~<,(€m)) where k ~ U{1, Kin} > ...and apply meta-net augmentations
10: Sgn ) sim(fim (™), f{x(tgm))) > Compute similarities between the augmented image-text pairs
11: end for
12: end for
13: O(x(m™) (M) L(min; ; Sz(jm ), Yi) > Find the least similar pair, and compute its alignment loss
14: end for
15: b~ — aV(;% Zszl £(x(m) gy () > SGD on the mini-batch B of the max-loss image-text pairs
16: end for
17: return ¢ > Return the learned prompt embeddings and meta-net weights

18: end function

(b) Oxford Pets.

i RCHaey.com

(c) Caltech-101.

Figure 5. Example images from the datasets used in our experi-
ments.

C.2. Transferring UEs across models and PL algo-
rithms

In Table 7, we explore the transferability of EM UEs. Here,
we take the UEs generated by ViT-B/16, using either CoOp
or CoCoOp as the PL algorithm, and learn them using

the other algorithm on different architectures. The result
shows that UEs can harm PL, and degrade accuracy sig-
nificantly from the zero-shot case (o, = 96.30%, o, =
93.23%, an, = 94.74%), and are transferable.

Table 7. Transfer EM UEs across models & PL methods on Caltech-
101.

ViT-B/16 — ‘ ViT-B/16 RN-50 RN-101 ViT-B/32
CoCoOp oy 79.43 69.82 75.35 83.78
+ o, 73.09 63.48 69.17 78.64
CoOp ap, 76.18 66.53 71.67 81.10
CoOp o 82.12 72.53 75.56 86.34
N o, 76.95 66.95 70.08 80.79
CoCoOp oy, 79.55 69.54 72.73 83.47
CoCoOp oy 80.68 70.05 75.93 82.76
N o, 74.90 63.97 69.60 79.57
CoCoOp oy, 77.54 66.88 72.58 81.06

C.3. A*-Adapted UEs

In this section, we consider an adaptive-variant of EM, where
the content creator is aware of the use of A’ by the learner.
For this, it adapts Objective 9 of A> to EM to generate per-
turbations §:

min s, ¢) Ex;,y)~D,. | Max( 5y L(S(X; + 6l7£)ijay)}a
(11)



In addition, we also examine the ablation of image- and
text-based augmentations for both the content creator and
the learner. We provide the results in Table 8.

From Table 8, it can be observed that the A?> does not
significantly reduce its defense effectiveness when faced
with A’-adapted UEs. We believe the main reason is that
while UEs are bounded by the perturbation budget, A’’s
transformations are not, and can thus be effective in reducing
the impact of UEs.

Table 8. Adaptive poisoning of A® variants with EM on Caltech-101.
Rows indicate the methods to generate the poisoning samples. and
columns indicate the augmentation modalities to train the prompt
learner. “+ Image” and “+ Text” respectively denote using only the
image and text augmentation modalities, and “Full” denotes using
both. The image encoder backbone is ResNet-50.

Methods | Baseline +Image +Text Full

EM 75.53 92.51 84.69 94.28
+ Image 78.10 87.84 81.07 90.66
+ Text 76.29 90.13 82.94 9275
Full 79.68 86.37 80.83 89.42

Table 9. A’ with varying K and a fixed K = 5, and vice versa
for a varying Kix and a fixed K, = 5, under EM on Caltech-101
with the base-to-novel protocol. The image encoder backbone is
ResNet-50.

Ky ‘ Qap QO QO Kin ‘ Qp Qi Qp
1193.00 90.54 091.75 1| 86.82 8346 85.11
319411 91.08 92.57 319150 88.12 89.78
519443 91.22 92.80 519439 9124 92.79
719375 90.61 92.15 719474 90.58 92.61
919449 9135 92.89 919496 91.63 93.27

C.4. Sensitivity Analyses

In this section, to evaluate the A’ prompt learning under
different numbers of repeated augmentation samples Kijy,
and K, We first fix Ki, to 5 and sweep the results of
K € {1,3,5,7,9}, and vice versa for a K, sweep. We
present the results for the base-to-novel protocol, which
reports the accuracy values of the base (ay,) and novel (o)
classes, and the harmonic mean (ay,).

Table 9 present the results that respectively sweep the
numbers of image and text augmentation samples. As an aug-
mented sample corresponds to an additional pass through the
image or text encoder, the computational cost increases lin-
early with K, or Kix. In both cases, as Kj,, or Ky increases,
the performance improves, but mostly saturates after a cer-
tain point. For this reason, we recommend K, = K =5
to strike a balance between performance and computational
cost.
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