
A Closer Look at Time Steps is Worthy of Triple Speed-Up for Diffusion Model
Training

Supplementary Material

A. More Detail of Experiments

In this section, we introduce detailed experiment settings,
datasets, and architectures.

A.1. Architecture and Training Recipe.
We utilize Unet and DiT as our base architecture in the dif-
fusion model. pre-trained VAE which loads checkpoints
from huggingface is employed to be latent encoder. Fol-
lowing Unet implementation from LDM and DIT from of-
ficial implementation, we provide the architecture detail in
Tab. 6. We provide our basic training recipe and evaluation
setting with specific details in Tab. 7.

A.2. Datasets
CIFAR-10. CIFAR-10 datasets consist of 32 × 32 size col-
ored natural images divided into categories. It uses 50, 000
in images for training and EDM evaluation suite in image
generation.

MetFaces is an image dataset of human faces extracted
from works of art. It consists of 1336 high-quality PNG
images at 1024×1024 resolution. We download it at 256
resolution from kaggle.

FFHQ is a high-quality image dataset of human faces,
contains 70,000 images. We download it at 256x256 reso-
lution from kaggle.

ImageNet-1K is the subset of the ImageNet-21K dataset
with 1, 000 categories. It contains 1, 281, 167 training im-
ages and 50, 000 validation images.

MSCOCO is a large-scale text-image pair dataset. It
contains 118K training text-image pairs and 5K validation
images. We download it from official website.

FaceForensics is a video dataset consisting of more than
500,000 frames containing faces from 1004 videos that can
be used to study image or video forgeries.

A.3. Detail of MDT + SpeeD Experiment
MDT utilizes an asymmetric diffusion transformer archi-
tecture, which is composed of three main components: an
encoder, a side interpolater, and a decoder. During train-
ing, a subset of the latent embedding patches is randomly
masked using Gaussian noise with a masking ratio. Then,
the remaining latent embedding, along with the full latent
embedding is input into the diffusion model.

Following the official implementation of MDT, We uti-
lize DiT-S/2 and MDT-S/2 as our base architecture, whose
total block number both is 12 and the number of decoder

layers in MDT is 2. We employ the AdamW [39] opti-
mizer with constant learning rate 1e-4 using 256 batch size
without weight decay on class-conditional ImageNet with
an image resolution of 2562. We perform training on the
class-conditional ImageNet dataset with images of resolu-
tion 256x256. The diffusion models are trained for a total
of 1000K iterations, utilizing a mask ratio of 0.3.

A.4. Detail of FDM + SpeeD Experiment

FDM add the momentum to the forward diffusion process
with a scale that control the weight of momentum for faster
convergence to the target distribution. Following official
implementation, we train diffusion models of EDM and
FDM. We retrain these official network architecture which
is U-Net with positional time embedding with dropout rate
0.13 in training. We adopt Adam optimizer with learning
rate 1e-3 and batch size 512 to train each model by a to-
tal of 200 million images of 322 CIFAR-10 dataset. Dur-
ing training, we adopt a learning rate ramp-up duration of
10 Mimgs and set the EMA half-life as 0.5 Mimgs. For
evaluation, EMA models generate 50K images using EDM
sampler based on Heun’s 2nd order method [61].

A.5. Text-to-Image Experiment Detail

In text to image task, diffusion models synthesize images
with textual prompts. For understanding textual prompts,
text-to-image models need semantic text encoders to en-
code language text tokens into text embedding. We in-
corporate a pre-trained CLIP language encoder, which pro-
cesses text with a maximum token length of 77. DiT-XL/2
is employed as our base diffusion architecture. We employ
AdamW optimizer with a constant learning rate 1e-4 with-
out weight decay. We train text-to-image diffusion models
for 400K training iterations on MS-COCO training dataset
and evaluate the FID and CLIP score on MS-COCO vali-
dation dataset. To enhance the quality of conditional image
synthesis, we implement classifier-free guidance with 1.5
scale factor.

A.6. Theoretical Analysis

A.6.1. Notations
In this section, we will introduce the main auxiliary nota-
tions and the quantities that need to be used. The range of
schedule hyper-parameter group {βt}t∈[T ] turns out to be
t = 1 to t = T . For analytical convenience, we define β0 as
β0 := β1 −∆β/T .

https://huggingface.co/stabilityai/sd-vae-ft-mse
https://github.com/CompVis/stable-diffusion
https://github.com/NVlabs/edm
https://www.kaggle.com/
https://www.kaggle.com/
https://cocodataset.org/#home


architecture input size input channels patch size model depth hidden size attention heads

U-Net 32 × 32 3 - 8 128 1

DiT-XL/2 32 × 32 4 2 28 1152 16

DiT-S/2 32 × 32 4 2 12 384 6

Table 6. Architecture detail of Unet and DiT on MetFaces, FFHQ, and ImageNet.

MetFaces 256 × 256 FFHQ 256 × 256 ImageNet-1K 256 × 256

latent size 32 × 32 × 3 32 × 32 × 3 32 × 32 × 3

class-conditional ✓

diffusion steps 1000 1000 1000

noise schedule linear linear linear

batch size 256 256 256

training iterations 50K 100K 400K

optimizer AdamW AadamW AdamW

learning rate 1e-4 1e-4 1e-4

weight decay 0 0 0

sample algorithm DDPM DDPM DDPM

number steps in sample 250 250 250

number sample in evaluation 10, 000 10, 000 10, 000

Table 7. Our basic training recipe based on MetFaces, FFHQ, ImageNet datasets

Another auxiliary notation is forward ratio ρt, which is
defined as ρt = t/T . Forward ratio provide an total number
free notation for general diffusion process descriptions.

Based on the two auxiliary notations β0 and ρt, the ex-
pression of βt with respect to the forward process ratio is
βt = β0 +∆βρt.

The relationship between αt and βt is recalled and re-
written as follows: αt = 1 − βt = 1 − β0 −∆βρt. ᾱt the
multiplication of αt is re-written as ᾱt = Πt

s=1(1 − β0 −
∆βρs).

Perturbed samples’ distribution: xt|x0 ∼
N (
√
ᾱtx0, (1− ᾱt)I)

A.6.2. Auxiliary Lemma and Core Theorem
Lemma 1 (Bounded α by β). In DDPM [20], using a sim-
ple equivariant series {βt}t∈[T ] to simplify the complex cu-
mulative products {ᾱt}t∈[T ], we obtain the following auxil-
iary upper bound of ¯alphat.

ᾱt ≤ exp{−(β0t+
∆βt

2

2T
)}

A.6.3. Propositions
Proposition A.1 (Jensen’s inequality). If f is convex, we
have:

EXf(X) ≥ f(EXX).

A variant of the general one shown above:

||
∑
i∈[N ]

xi||2 ≤ N
∑
i∈[N ]

||xi||2.

Proposition A.2 (triangle inequality). The triangle in-
equality is shown as follows, where || · || is a norm and A,B
is the quantity in the corresponding norm space:

||A+B|| ≤ ||A||+ ||B||

.

Proposition A.3 (matrix norm compatibility). The matrix
norm compatibility, A ∈ Ra×b, B ∈ Rb×c, v ∈ Rb:

||AB||m ≤ ||A||m||B||m
||Av||m ≤ ||A||m||v||.

Proposition A.4 (Peter Paul inequality).

2⟨x, y⟩ ≤ 1

ϵ
||x||2 + ϵ||y||2

.

A.6.4. Proof of Lemma 1

Proof. To proof the auxiliary Lemma 1, we re-arrange the
notation of ᾱt as shown in Section A.6.1, and we have the



Table 8. The ingredients of generalized curves ∆̇ and Σ̇ schedules about mainstream SDE designs, including VP, VE [59], EDM [28].

Schedules s σ2 ṡ σ̇

VP exp{− 1
4
∆βt

2 − 1
2
β0t} exp{ 1

2
∆βt

2 + β0t} − 1 − σσ̇
(1+σ2)3/2

(1+σ2)(∆βt+β0)

2σ

VE 1 t 0 1

EDM 1 t2 0 2t

following upper bound:

log ᾱt =

t∑
s=1

log(1− β0 −∆βρs)

≤ t log(
1

t

t∑
s=1

(1− β0 −∆βρs))

= t log(1− β0 −∆β
1

t

t∑
s=1

s

T
)

= t log(1− β0 −∆β
t+ 1

2T
)

≤ −(β0t+
∆β(t+ 1)t

2T
),

where the two inequalities are by the concavity of log func-
tion and the inequality: log(1 + x) ≤ x. Taking exponents
on both sides simultaneously, we have:

ᾱt ≤ exp{−(β0t+
∆βt

2

2T
)}.

A.6.5. Proof of Theorem 1
Before the proof of the theorem, we note that the sam-
ples xt|x0 ∼ N (µt, σt) have the following bounds with
Lemma 1:
• Reformulate the expression of

√
ᾱ, we have the mean

vector µt’s components µ̇t bounded by ẋ0 the corre-
sponding components of data x0 as follows:

µ̇t =
√
ᾱtẋ0 ≤ exp{−1

2
(β0t+

∆βt
2

2T
)}ẋ0,

• Reformulate the expression of ᾱ, we have a partial order
relation on the cone about covariance matrix of xt|x0 as
follows:

σt = (1− ᾱt)I ⪰ (1− exp{−(β0t+
∆βt

2

2T
)})I.

Proof. The process increment at given tth time step is δt =
xt+1 − xt. δt is a Gaussian process as follows:

δt ∼ N ((
√
αt+1 − 1)

√
ᾱtx0︸ ︷︷ ︸

ϕt

, [2− ᾱt(1 + αt+1)]I︸ ︷︷ ︸
Ψt

)

The theorem’s key motivation is that the label is noisy,
and noisy magnitude is measured by mean vector’s norm
||ϕt|| and covariance matrix Ψt.

The upper bounds of mean vectors’ norm and the partial
order of covariance matrix at different time step t are shown
as follows:

||ϕt||2 ≤ (
√
αt+1 − 1)2ᾱt||Ex0||2

≤ (1− αt+1)ᾱt||Ex0||2

≤ (β0 +∆βρt+1︸ ︷︷ ︸
βt+1

) exp{−(β0 +
∆βt

2T︸ ︷︷ ︸
βt/2

)t}||Ex0||2

≤ βmax exp{−(β0 +
∆βt

2T︸ ︷︷ ︸
βt/2

)t}||Ex0||2

where the inequalities are by Lemma 1, (1 − x)2 ≤ (1 −
x2) = (1− x)(1 + x), when x ∈ [0, 1], and βt+1 ≤ βmax

Ψt = [2(1− ᾱt) + ᾱt(β0 +∆βρt+1)]I

⪰ 2(1− exp{−(β0 +
∆βt

2T︸ ︷︷ ︸
βt/2

)t})I+ ᾱtβt+1I

⪰ 2(1− exp{−(β0 +
∆βt

2T︸ ︷︷ ︸
βt/2

)t})I

where the inequalities are by Lemma 1 and ᾱtβt+1I ⪰ 0.
The residual term is

ᾱtβt+1 = βt+1Π
t
s=1(1−βs) ≥ exp{log βt+1+t log(1−βt)}

B. More Experiment Results

Efficiency comparisons. In Fig. 8, besides the Min-SNR
and CLTS, we show the efficiency comparison with P2 and
Log-Normal methods. One can find that our method con-
sistently accelerates the diffusion training in large margins.

Table 9. Super resolution.

Method 50K 100K

DiT-XL/2 77.9 35.4

SpeeD 48.7 10.6

Super resolution with
SpeeD. We employ SpeeD
to super-resolution image
generation on 512 × 512
MetFaces compared with
vanilla DiT. We train DiT-XL/2 for 100K training iterations
and compare the FID score at 50K, 100K training iterations.
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Figure 8. More efficiency comparison on MetFaces.

The batch size is 32 for saving the GPU memory. As shown
in 9, SpeeD obtain better performance than vanilla DiT at
same training iterations on 5122 MetFaces dataset. It indi-
cates that SpeeD can achieve training acceleration on super-
resolution tasks.

B.1. Additional Experiments

Experimetns on DiT-S/8. Further comparison on DiT of
smaller scales are reported in Tab. 10. The datasets include
ImageNet-1K and Celeb-A.

ImageNet-1K (FID ↓)
#steps DiT-S/8 P2 Min-SNR Log-normal CLTS ours
10K 399.9 398.6 398.4 399.7 399.6 400.8
20K 380.0 365.0 368.0 387.5 381.9 379.2
40K 200.0 207.6 208.6 365.9 231.6 191.5

Celeb-A (FID ↓)
10K 408.7 412.5 408.7 410.4 408.0 407.8
20K 386.7 366.8 386.7 394.0 386.4 377.9
40K 271.6 271.1 271.6 293.0 258.8 254.9

Celeb-A (IS ↑)
10K 1.50 1.49 1.50 1.50 1.50 1.50
20K 1.49 1.48 1.49 1.50 1.49 1.63
40K 3.29 3.70 3.29 2.55 3.46 3.87

Table 10. Comparison on ImageNet-1K and Celeb-A. FID and IS
are reported. The baseline is measured on DiT-S/8, with global
batchsize of 16. Other settings are default.

More baslines. Comparison between SpeeD and BS [78]
and B-TTDM [79] are shown in Tab. 11.

Detailed ablation study. FID-10K on 10K/20K/40K/50K
iterations are provided in Tab. 12 the model is DiT-S/8 with
batchsize of 16.

B.1.1. Detailed Training Process
The detailed training process on FFHQ through 100K itera-
tions are shown in Tab. 13.

C. More Related Works
We discuss other works related to SpeeD, including Text to
Image and Video generation. Another point to mention is
that we learn from InfoBatch [48] in writing.

Text to image generation with diffusion models Text-
to-image generation has emerged as a hotly contested and
rapidly evolving field in recent years, with an explosion of
related industrial products springing up [2, 6, 11, 51, 54].

#steps BS [78] B-TTDM [79] ours
100K 155.9 157.4 155.2
200K 152.2 150.9 151.7
400K 141.8 140.5 139.2

Table 11. New baselines to be added. The settings follow BS.
(FID)

#steps 10K 20K 40K 50K
DiT-S/8 399.9 380.0 200.0 –
λ = 0.5 400.7 376.7 207.4 202.1
λ = 0.6 400.8 379.2 191.5 191.2
λ = 0.8 400.3 379.2 203.2 200.5
τ = 600 401.0 382.6 210.1 198.5
τ = 700 400.8 379.2 191.5 191.2
τ = 800 399.5 380.9 200.1 200.0
k = 1 400.4 388.0 214.5 202.4
k = 2 400.8 379.2 191.5 191.2
k = 10 400.4 380.5 231.7 206.7

Table 12. Detailed ablation across training steps. FID-10K is re-
ported. DiT-S/8 serves as the baseline. Global batchsize is 16.

Convert textual descriptions into corresponding visual con-
tent, models not only learn to synthesize image content
but also ensuring alignment with the accompanying textual
descriptions. To better align images with textual prompt
guidance, previous work has primarily focused on enhance-
ments in several schemes including strengthening the ca-
pacity of text encoder [49, 50] improving the condition plu-
gin module in diffusion model [71], improving data qual-
ity [2].

Video generation with diffusion models. As diffusion
models achieve tremendous success in image generation,
video generation has also experienced significant break-
throughs, marking the field’s evolution and growth. Inspired
by image diffusion, pioneering works such as RVD [68] and
VDM [22] explore video generation using diffusion meth-
ods. Utilizing temporal attention and latent modeling mech-
anisms, video diffusion has advanced in terms of genera-
tion quality, controllability, and efficiency [15, 18, 21, 56,
63, 65, 70, 81]. Notably, Stable Video Diffusion [3] and
Sora [5] achieve some of the most appealing results in the
field.

Other diffusion acceleration works To achieve better
results with fewer NFE steps, Consistency Models [60] and
Consistency Trajectory Models [29] employ consistency
loss and novel training methods. Rectified Flow [36], fol-
lowed by Instaflow [37], introduces a new perspective to



iterations (K) 10 20 30 40 50 60 70 80 90 100
DiT-XL/2 356.1 335.3 165.2 35.8 12.9 11.9 10.5 9.6 8.7 7.8

SpeeD 322.1 320.0 91.8 19.8 9.9 7.6 7.1 6.6 6.2 5.8

Table 13. Details about training to 100K on FFHQ.

obtain straight ODE paths with enhanced noise schedule
and improved prediction targets, together with the reflow
operation. DyDiT [73] incorporates dynamic neural net-
works [16, 72, 73] into diffusion models, achieving signifi-
cant acceleration.

D. Visualization

Visualizations of the generated images. The figures above
illustrate the quality of images generated by our method
across various datasets, including CIFAR-10, FFHQ, Met-
Faces, and ImageNet-1K. In Fig. 9, the generated im-
ages from the CIFAR-10 dataset display distinct and rec-
ognizable objects, even for challenging categories. Fig. 10
presents generated images from the FFHQ dataset, show-
casing diverse and realistic human faces with varying ex-
pressions and features. Fig. 11 exhibits images from the
MetFaces dataset, depicting detailed and lifelike represen-
tations of artistic portraits. Finally, Fig. 12 includes images
from the ImageNet-1K dataset, featuring a wide range of
objects and scenes with excellent accuracy and visual fi-
delity. These results emphasize the superior performance of
our method in generating high-quality images across differ-
ent datasets, indicating its potential for broader applications
in image synthesis and computer vision tasks.



Figure 9. Generated images of CIFAR-10.

Figure 10. Generated images of FFHQ.



Figure 11. Generated images of MetFaces.

Figure 12. Generated images of ImageNet-1K.
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