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1. More Dataset Details
In this section, we provide additional details about the
mixed degradation dataset described in Section 4. The
dataset comprises images for 10 distinct image restoration
tasks, including rainstreak, raindrop, haze, snow, low-light,
noise, motion blur, defocus blur, shadow, and JPEG com-
pression. Detailed descriptions of these datasets are pro-
vided below:
• Rainstreak: For single-task setting, we use the

Rain100H [88] dataset, which contains 1,800 images for
training and 100 images for testing. We also conduct
experiments on the Rain100L [88] and Rain1400 [19]
datasets for different raining intensities and cross-dataset
experiments. Rain100L also consists 1,800 training and
100 testing images with simpler scenes and sparser rain-
streaks compared to Rain100H. For the Rain1400 dataset,
we select 3,780 images for training with three different
intensities of rain and 1,400 images for testing.

• Raindrop: we use RainDrop [57] dataset with 861 images
for training and 58 images for testing.

• Haze: The dataset is derived from the RESIDE-6k
dataset [58], which includes a mixture of indoor and out-
door images. It provides 6,000 images for training and
1,000 images for testing.

• Snow: The Snow100K [42] dataset is a large-scale bench-
mark designed for snow removal in image restoration
tasks, consisting of 100,000 synthetic images with vary-
ing snow degradation levels. Following DA-CLIP [45],
we utilize a subset comprising 1,872 images for training
and 601 images for testing.

• Low-light: We use the LOL-v1 [83] dataset for single-
task setting, which contains 485 images for training and
15 images for testing. We also use the MEF [47] dataset
to evaluate the performance under different lighting con-
ditions. Note that our FDI Adapter only uses LOL-v1 for
training, and we select 17 images from MEF for further
testing.

• Noise: We collect 3,440 training images from the
DIV2K [2] and Flickr2K [75] datasets and use the
CBSD68 [48] dataset for testing, which contains 68 im-
ages, and the noise level is set to 50.

• Motion blur: We use the GoPro [51] dataset consisting of
2,103 images for training and 1,111 images for testing.

• Defocus blur: We use the DPDD [1] dataset, which con-
tains 350 training images and 150 testing images.

• Shadow: We use the SRD [59] dataset with 2,680 images
for training and 408 images for testing.

• JPEG compression: the training dataset is the same as
the denoising task, and we use 29 images from the
LIVE1 [71] dataset for testing. The JPEG quality factor
is set to 10.

• Mixed-degradation: for raindrop + rainstreak, we use the
RainDS [60] dataset with 1,000 images for training and
200 images for testing. For rainstreak + haze + low-light,
we use the Outdoor-Rain [77] dataset, which contains 750
images for training and 50 images for testing. We also use
the BID [21] dataset for a more complex combination:
rain streak + snow + haze + raindrop. We collect 3,975
training images and 500 images for testing.

2. More Implementation Details

We use the pretrained Stable Diffusion v2.1-512-base-ema 1

model and the pretrained BLIP-2-opt-2.7b 2 as backbones.
Images are resized to 512 × 512 during our experiments.
Following T2I Adapter [50], we evenly divide the 50-step
DDIM sampling into 3 stages and only add guidance in-
formation to the first beginning stage. Besides the default
training loss LLDM, we further introduce an L1 reconstruc-
tion loss to ensure better alignment between the latent space
representation and the ground truth. Specifically, for the i-th
elements of the respective latent vectors, the reconstruction
loss is defined as:

Lrecon = ∥zt − zGT∥1 =
∑
i

∣∣∣z(i)t − z
(i)
GT

∣∣∣ , (6)

where zt is the latent representation at timestep t, and zGT
is the latent representation of the ground truth image. This
additional loss penalizes deviations in the latent space and
enforces consistency during the denoising process.

The total training loss is thus formulated as:

Ltotal = LLDM + λreconLrecon, (7)

where λrecon is a hyperparameter that balances the contribu-
tion of the reconstruction loss to the overall objective, which
is empirically set as 0.1. By incorporating L1 reconstruc-
tion loss, the model benefits from improved robustness and
better fidelity in the generated outputs.

1https : / / huggingface . co / stabilityai / stable -
diffusion-2-base

2https://huggingface.co/Salesforce/blip2-opt-2.
7b
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Figure 9. More examples of cross-dataset experiments: given a test input, we apply FDI from different datasets within the same task to
perform restoration. Top row: simple synthetic images. Bottom row: real-world images. Please zoom in to see the details.
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Figure 10. Examples of cross-task experiments: given a test input, we apply FDI from datasets for another task to perform restoration.
Left: Denoising FDI for desnowing. Right: Dehazing FDI for underwater image restoration (IR). Please zoom in to see the details.

Figure 11. t-SNE visualization of FDI before and after the noise
decoupling. Left: original FDI F . Right: refined FDI F̂ .

3. Discussion

3.1. Cross-dataset combinations

As mentioned in Section 4.1, there exists a certain level of
compatibility between different datasets for the same task.
This inspires us to evaluate the generalizability of existing
training datasets to real-world degraded images by lever-
aging various FDI dataset sources. As shown in Figure 9,
it can be observed that for simpler scenes (top row), there
is a significant level of generalization across most datasets.
However, for complex real-world scenes, more sophisti-
cated datasets with richer scene or degradation modeling
are required for effective FDI guidance.

3.2. Cross-task combinations
For some similar tasks, we observe a certain level of com-
patibility between different tasks due to similarities in the
types of degradations. As illustrated in Figure 10, FDI de-
rived from denoising datasets can be applied to desnowing,
and FDI from dehazing datasets can guide underwater im-
age restoration. Notably, denoising FDI may result in a loss
of some image details, while FDI from dehazing datasets,
influenced by their inherent image distributions, may intro-
duce varying degrees of color distortion.

3.3. Analysis on FDI
Besides, we also visualize the t-SNE statistics of the orig-
inal FDI F and the refined FDI F̂ in Figure 11. (a) As
shown in the left figure, FDI derived from datasets with dif-
ferent degradation types exhibits a natural degree of separa-
bility. However, certain overlaps between different FDIs are
also observed, particularly for degradation types that fre-
quently co-occur, such as rain streaks and haze. (b) After
applying noise decoupling, degradation-independent noise
is effectively eliminated (right figure). Moreover, it can be
observed that FDIs for certain tasks still retain some level
of similarity, such as those between low-light and shadow.
This further validates the cross-task compatibility of FDIs.

4. More Experimental Results
More visual comparisons on other tasks are given in
Figure 12 (single-degradation) and Figure 13 (mixed-



Figure 12. More visual comparison under different single-task degradations. Please zoom in to see the details.

Table 6. Ablation on different proportions of the training set.
Training Set Deraining (Rain100H) LLIE (LOL-v1)
Proportion 30% 60% whole 30% 60% whole

PSNR ↑ 29.57 31.88 34.55 23.19 24.28 24.55
LPIPS ↓ 0.176 0.045 0.023 0.158 0.091 0.075

Table 7. Comparisons of single-type degradation efficiency. All
models are tested under the same environment.

Method Prompt-based T2I model-based
PromptIR DiffIR DA-CLIP Ours

Param (M) 102.50 375.81 88.25 45.10
Inference time (s) 0.88 9.97 5.11 3.04

degradation). It can be seen that our method stably produces
well-structured results with finer details while remaining ro-
bust against different noise combinations.
Influence of image pair numbers. We further conducted
comparisons by randomly selecting varying proportions of
the training set, which can also be regarded as a few-shot
setting. Tab. 6 shows that more reference pairs usually
yield FDI better representing degradation characteristics.
For tasks like low-light enhancement with similar degrada-
tions across images rather than various patterns like rain,
fewer training pairs still achieve satisfactory results.
Computing cost. Table 7 further shows the comparisons in
terms of computing efficiency. We use pre-trained BLIP-2
to obtain FDI, thus only the FDI adapter contributes to the
parameter count, which is less than other prompt or T2I-
based methods. Note that for multi-degradation, different
task-specific adapters can be trained in parallel.
More discussions. 1. CLIP vs. BLIP-2 encoders. Com-
pared to the CLIP encoder, the Q-former can filter out
more degradation-irrelevant information from image em-

beddings [17, 56], as shown in Figure 11. 2. ControlNet
vs. Adapter. ControlNet-based methods (e.g., DiffBIR [40]
and SUPIR [89]) usually result in a high parameter count
due to the parameter replication [50]. Besides, these meth-
ods are better suited for blind image enhancement (e.g., de-
noising and super-resolution), which can be restored using
generative priors from diffusion models. For degradations
like rain and fog that obstruct the original content, their re-
construction process without explicit degradation guidance
may damage the content consistency. However, for blind
image restoration, e.g., image super-resolution or denois-
ing, our semantic difference-based FDI is not well-suited,
as such degradations often do not affect the image seman-
tics, making them difficult to represent through BLIP-2 fea-
ture differences. We are experimenting to improve this by
pertaining/fine-tuning the Q-Former to make it more sensi-
tive to subtle degradations (future work).

5. More Applications
Benefiting from the reference-based mechanism, our
method can also be applied to image-to-image translation
tasks such as style transfer, as shown in Figure 14. In this
task, the input reference image pair corresponds to images
with different styles from the datasets. Additionally, our
method enables the fusion of different styles through the
combination of multiple FDI adapters.



Figure 13. More visual results under different mixed-degradation combinations. Please zoom in to see the details.
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Figure 14. Examples of style transfer. Please zoom in to see the details.




