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Abstract

The supplementary material provides a detailed description
of the experimental setup using the ARConv module, cov-
ering several key aspects. It includes an overview of the
dataset composition, followed by the configuration of the
training process. Additionally, the material offers a brief
introduction to the benchmark methods and outlines the
specifics of the convolution kernel replacement experiment.
Finally, it presents further result comparisons and visual-
izations to support the findings.

7. Details on Experiments
7.1. Datasets
The experimental data used in this study is captured by three
different sensors: WorldView3 (WV3), QuickBird (QB),
and Gao-Fen2 (GF2). A downsampling process is used to
simulate and build our dataset, which includes three train-
ing sets corresponding to the three sensors. Each train-
ing set is paired with both reduced-resolution and full-
resolution test sets, enabling comprehensive model eval-
uation across different image qualities. The training sets
consist of PAN/LRMS/GT image pairs, with dimensions of
64 × 64, 64 × 64 × C, and 64 × 64 × C, respectively.
The WV3 training set contains 9,714 PAN/LRMS/GT im-
age pairs (C = 8), the QB training set contains 17,139 pairs
(C = 4), and the GF2 training set contains 19,809 pairs (C =
4). The corresponding reduced-resolution test sets for these
three training sets each consist of 20 PAN/LRMS/GT im-
age pairs, with dimensions of 256 × 256, 256 × 256 × C,
and 256×256×C, respectively. The full-resolution dataset
includes 20 RAN/LRMS image pairs, with dimensions of
512 × 512, 512 × 512 × C. These datasets are publicly
available through the PanCollection repository [8].

7.2. Training Details
This section provides a detailed description of the training
details for all our experiments, focusing on aspects such as
the loss function, optimizer, batch size, number of train-
ing epochs, exploratory phase epochs, convolution kernel
height and width learning range, initial learning rate, and
learning rate decay methods. In all experiments, the loss
function used is l1loss, the optimizer is Adam optimizer
[17], the batch size is 16, the initial learning rate is 0.0006,
the learning rate decays by a factor of 0.8 every 200 epochs
and the exploratory phase consists of 100 epochs. The pur-
pose of the exploratory phase is to address the challenge
of convergence when selecting the number of convolution

kernel sampling points based on the average learned height
and width of the kernels. After the exploratory phase, we
randomly select a set of convolution kernel sampling point
combinations and keep them fixed during the subsequent
training process. The remaining configuration differences
are shown in the Tab. 9.

7.3. Benchmark Methods
In the main text, we provide a detailed comparison between
the proposed method and several established approaches.
To facilitate this comparison, Tab. 12 presents a concise
overview of the benchmark methods used in our study. The
table is divided into two parts by a horizontal line, with
traditional methods listed above the line and deep learning
methods below the line.

7.4. Replacing Convolution Experiment
In FusionNet, the original architecture consists of four stan-
dard residual blocks. In AR-FusionNet, we replace the
convolution layers in the two middle residual blocks with
our proposed ARConv. This modification results in a to-
tal of four ARConv layers in the network, which enhances
its ability to capture more complex features. Similarly, in
LAGNet, which has five standard residual blocks, we re-
place the convolution layers in the second and fourth blocks
with ARConv. This strategic placement allows us to evalu-
ate ARConv in a deeper network structure, providing a com-
parison with other models. ARNet and CANNet are con-
structed similarly, with each replacing the standard convo-
lution modules in the U-Net architecture [23, 35] with their
respective proposed convolution modules. Specifically, in
CANNet, all standard convolutions are replaced with AR-
Conv, thus transforming it into ARNet. This provides a nat-
ural comparison between the two networks, offering valu-
able insights into the impact of the different convolution
techniques. The training set for all three experiments is
WV3, other training details can be found in Tab. 8.

7.5. More Results
Tab. 10 and 11 present the performance benchmarks on the
full-resolution QB and GF2 datasets, evaluating the effec-
tiveness of various methods. Among the three metrics, Dλ

measures the network’s ability to capture spectral informa-
tion, while Ds reflects the network’s capacity to preserve
spatial details. The metric HQNR = (1 − Dλ)(1 − Ds)
provides a comprehensive evaluation of the network’s over-
all performance and is considered the most critical metric
for assessing methods on full-resolution datasets. Fig. 7



Table 8. The different configurations for replacing convolution experiment. The first three columns represent the experiment name, the
number of training epochs, and the convolution kernel height and width learning range. The subsequent columns, Layer1-10, represent the
final number of sampling points for each of the ten convolution layers.

Experiment Epochs Range Layer1-2 Layer3-4 Layer5-6 Layer7-8 Layer9-10

AR-FusionNet 400 1 − 9 3 × 5, 7 × 7 7 × 3, 5 × 5 − − −
AR-LAGNet 220 1 − 9 5 × 3, 5 × 3 5 × 3, 7 × 7 − − −
AR-CANNet 600 1 − 18 3 × 3, 3 × 3 7 × 5, 3 × 5 3 × 3, 3 × 3 3 × 3, 5 × 5 3 × 5, 3 × 3

Table 9. The different configurations for all experiments except replacing convolution experiment which is detailed in Sec. 7.4. The first
three columns represent the experiment name, the number of training epochs, and the convolution kernel height and width learning range,
where ”HWR” stands for Height and Width Range. The subsequent columns, Layer1-10, represent the final number of sampling points
for each of the ten convolution layers in ARNet. The names of the first three experiments correspond to their respective training datasets,
while all subsequent experiments use the WV3 dataset for training.

Experiment Epochs Range Layer1-2 Layer3-4 Layer5-6 Layer7-8 Layer9-10

WV3 600 1 − 18 3 × 3, 3 × 3 7 × 5, 3 × 5 3 × 3, 3 × 3 3 × 3, 5 × 5 3 × 5, 3 × 3
QB 200 1 − 9 3 × 3, 3 × 5 5 × 7, 3 × 3 5 × 3, 3 × 3 3 × 3, 7 × 7 3 × 3, 3 × 3
GF2 630 1 − 18 3 × 3, 3 × 3 3 × 7, 3 × 5 3 × 3, 3 × 3 3 × 3, 5 × 3 3 × 3, 3 × 3

Ablation study (a) 600 3 − 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3
Ablation study (b) 600 1 − 18 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3
Ablation study (c) 600 1 − 18 3 × 3, 3 × 3 5 × 5, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3

HWR1 − 3 600 1 − 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3
HWR1 − 9 600 1 − 9 5 × 3, 3 × 3 3 × 3, 3 × 3 5 × 3, 5 × 3 3 × 3, 3 × 3 5 × 3, 3 × 3
HWR1 − 18 600 1 − 18 3 × 3, 3 × 3 7 × 5, 3 × 5 3 × 3, 3 × 3 3 × 3, 5 × 5 3 × 5, 3 × 3
HWR1 − 36 600 1 − 36 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 5 × 5 5 × 3, 3 × 3 3 × 3, 3 × 3
HWR1 − 63 600 1 − 63 3 × 3, 3 × 3 5 × 5, 5 × 5 5 × 5, 5 × 5 3 × 5, 5 × 5 3 × 3, 3 × 3

Comparison with DCNv2 600 1 − 18 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3 3 × 3, 3 × 3

Table 10. Performance benchmarking on the QB dataset using 20
full-resolution samples. Best in bold; second best underlined.

Methods Dλ ↓ Ds ↓ HQNR↑

EXP [1] 0.0436±0.0089 0.1502±0.0167 0.813±0.020
TV [21] 0.0465±0.0146 0.1500±0.0238 0.811±0.034
MTF-GLP-FS [31] 0.0550±0.0142 0.1009±0.0265 0.850±0.037
BDSD-PC [29] 0.1975±0.0334 0.1636±0.0483 0.672±0.058
CVPR19 [12] 0.0498±0.0119 0.0783±0.0170 0.876±0.023
LRTCFPan [37] 0.0226±0.0117 0.0705±0.0351 0.909±0.044

PNN [19] 0.0577±0.0110 0.0624±0.0239 0.844±0.030
PanNet [38] 0.0426±0.0112 0.1137±0.0323 0.849±0.039
DiCNN [15] 0.0947±0.0145 0.1067±0.0210 0.809±0.031
FusionNet [6] 0.0572±0.0182 0.0522±0.0088 0.894±0.021
DCFNet [36] 0.0469±0.0150 0.1239±0.0269 0.835±0.016
LAGConv [16] 0.0859±0.0237 0.0676±0.0136 0.852±0.018
HMPNet [27] 0.1832±0.0542 0.0793±0.0245 0.753±0.065
CMT [24] 0.0504±0.0122 0.0368±0.0075 0.915±0.016
CANNet [9] 0.0370±0.0129 0.0499±0.0092 0.915±0.012

Proposed 0.0384±0.0148 0.0396±0.0090 0.924±0.0191

to 14 display the outputs of ARNet compared to vari-
ous benchmark methods on both reduced-resolution and
full-resolution test sets from the WV3, QB, and GF2
datasets. Additionally, residual maps between the outputs
and the ground truth are provided for the reduced-resolution
datasets. These figures and tables strongly demonstrate the
robustness of our proposed method across multiple datasets.

7.6. More Visualizations
In ARNet, there are a total of five AR-Resblocks, each con-
taining two ARConv layers. For our analysis, we select one

Table 11. Performance benchmarking on the GF2 dataset using 20
full-resolution samples. Best in bold; second best underlined.

Methods Dλ ↓ Ds ↓ HQNR↑

EXP [1] 0.0180±0.0081 0.0957±0.0209 0.888±0.023
TV [21] 0.0346±0.0137 0.1429±0.0282 0.828±0.035
MTF-GLP-FS [31] 0.0553±0.0430 0.1118±0.0226 0.839±0.044
BDSD-PC [29] 0.0759±0.0301 0.1548±0.0280 0.781±0.041
CVPR19 [12] 0.0307±0.0127 0.0622±0.0101 0.909±0.017
LRTCFPan [37] 0.0325±0.0269 0.0896±0.0141 0.881±0.023

PNN [19] 0.0317±0.0286 0.0943±0.0224 0.877±0.036
PanNet [38] 0.0179±0.0110 0.0799±0.0178 0.904±0.020
DiCNN [15] 0.0369±0.0132 0.0992±0.0131 0.868±0.016
FusionNet [6] 0.0350±0.0124 0.1013±0.0134 0.867±0.018
DCFNet [36] 0.0240±0.0115 0.0659±0.0096 0.912±0.012
LAGConv [16] 0.0284±0.0130 0.0792±0.0136 0.895±0.020
HMPNet [27] 0.0819±0.0499 0.1146±0.0126 0.813±0.049
CMT [24] 0.0225±0.0116 0.0433±0.0096 0.935±0.014
CANNet [9] 0.0194±0.0101 0.0630±0.0094 0.919±0.011

Proposed 0.0189±0.0097 0.0515±0.0099 0.931±0.012

ARConv from each block and visualize the heatmaps corre-
sponding to the height and width of its learned convolution
kernel. The heatmaps, shown in Fig. 15 to 18, provide valu-
able insight into the relationship between the kernel shapes
and the object sizes present in the feature maps. This adapt-
ability highlights the flexibility of our approach in handling
various object scales and offers compelling evidence of the
effectiveness of our method in dynamically adjusting to dif-
ferent input characteristics, making it a powerful tool for
tasks that require precise and scalable feature extraction.



Table 12. A brief introduction to various benchmark methods.

Method Year Introduction

EXP [1] 2002 Upsamples the MS image.
MTF-GLP-FS [31] 2018 Focuses on a regression-based approach for pansharpening, specifically for the estimation of injection coefficients at full resolution.
TV [21] 2014 Uses total variation to regularize an ill-posed problem in a widely used image formation model.
BSDS-PC [29] 2019 Addresses the limitations of the traditional BDSD method when fusing multispectral images with more than four spectral bands.
CVPR2019 [12] 2019 Proposes a new variational pan-sharpening model based on local gradient constraints to improve spatial preservation.
LRTCFPan [37] 2023 Proposes a novel low-rank tensor completion (LRTC)-based framework for multispectral pansharpening.

PNN [19] 2016 Adapts a simple three-layer architecture for pansharpening.
PanNet [38] 2017 Deeper CNN for pansharpening, incorporating domain-specific knowledge to preserve both spectral and spatial information.
DiCNN [15] 2018 Proposes a new detail injection-based convolutional neural network framework for pansharpening.
FusionNet [6] 2021 Introduces the use of deep convolutional neural networks combined with traditional fusion schemes for pansharpening.
DCFNet [36] 2021 Addresses the limitations of single-scale feature fusion by considering both high-level semantics and low-level features.
LAGConv [16] 2022 Employs local-context adaptive convolution kernels with global harmonic bias.
HMPNet [27] 2023 An interpretable model-driven deep network for fusing hyperspectral, multispectral, and panchromatic images.
CMT [24] 2024 Integrates a signal-processing-inspired modulation technique into the attention mechanism to effectively fuse images.
CANNet [9] 2024 Incorporates non-local self-similarity to improve the effectiveness and reduce redundant learning in remote sensing image fusion.

EXP MTF-GLP-FS TV BDSD-PC CVPR19 LRTCFPan PNN PanNet

DiCNN FusionNet DCFNet LAGConv HMPNet CMT CANNet Proposed

Figure 7. Comparison of qualitative results among benchmark methods on WV3 full-resolution dataset. The first row displays the RGB
outputs, and the second row shows the residual relative to the ground truth. Zoom in for best view.

EXP MTF-GLP-FS TV BDSD-PC CVPR19 LRTCFPan PNN PanNet

DiCNN FusionNet DCFNet LAGConv HMPNet CMT CANNet Proposed

Figure 8. Comparison of qualitative results among benchmark methods on WV3 reduced-resolution dataset. The first row displays the
RGB outputs, and the second row shows the residual relative to the ground truth. Zoom in for best view.



EXP MTF-GLP-FS TV BDSD-PC CVPR19 LRTCFPan PNN PanNet

DiCNN FusionNet DCFNet LAGConv HMPNet CMT CANNet Proposed

Figure 9. Comparison of qualitative results among benchmark methods on WV3 reduced-resolution dataset. The first row displays the
RGB outputs, and the second row shows the residual relative to the ground truth. Zoom in for best view.

EXP MTF-GLP-FS TV BDSD-PC CVPR19 LRTCFPan PNN PanNet

DiCNN FusionNet DCFNet LAGConv HMPNet CMT CANNet Proposed

Figure 10. Comparison of qualitative results among benchmark methods on QB reduced-resolution dataset. The first row displays the RGB
outputs, and the second row shows the residual relative to the ground truth. Zoom in for best view.



EXP MTF-GLP-FS TV BDSD-PC CVPR19 LRTCFPan PNN PanNet

DiCNN FusionNet DCFNet LAGConv HMPNet CMT CANNet Proposed

Figure 11. Comparison of qualitative results among benchmark methods on QB full-resolution dataset. The first row displays the RGB
outputs, and the second row shows the residual relative to the ground truth. Zoom in for best view.

EXP MTF-GLP-FS TV BDSD-PC CVPR19 LRTCFPan PNN PanNet

DiCNN FusionNet DCFNet LAGConv HMPNet CMT CANNet Proposed

Figure 12. Comparison of qualitative results among benchmark methods on GF2 full-resolution dataset. The first row displays the RGB
outputs, and the second row shows the residual relative to the ground truth. Zoom in for best view.

EXP MTF-GLP-FS TV BDSD-PC CVPR19 LRTCFPan PNN PanNet

DiCNN FusionNet DCFNet LAGConv HMPNet CMT CANNet Proposed

Figure 13. Comparison of qualitative results among benchmark methods on GF2 reduced-resolution dataset. The first row displays the
RGB outputs, and the second row shows the residual relative to the ground truth. Zoom in for best view.



EXP MTF-GLP-FS TV BDSD-PC CVPR19 LRTCFPan PNN PanNet

DiCNN FusionNet DCFNet LAGConv HMPNet CMT CANNet Proposed

Figure 14. Comparison of qualitative results among benchmark methods on GF2 full-resolution dataset. The first row displays the RGB
outputs, and the second row shows the residual relative to the ground truth. Zoom in for best view.
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Figure 15. Heatmaps of the heights and widths learned at each pixel by convolutional kernels at different layers. The input image is a
sample from the WV3 dataset.
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Figure 16. Heatmaps of the heights and widths learned at each pixel by convolutional kernels at different layers. The input image is a
sample from the QB dataset.
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Figure 17. Heatmaps of the heights and widths learned at each pixel by convolutional kernels at different layers. The input image is a
sample from the GF2 dataset.
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Figure 18. Heatmaps of the heights and widths learned at each pixel by convolutional kernels at different layers. The input image is a
sample from the GF2 dataset.


