Animate and Sound an Image

Supplementary Material

A. Additional Implementation Details

Data Processing. In our implementation, video is set to a
duration of 2 seconds with a frame rate of 7, while audio
preprocessing is consistent with AudioLDM2 [2]. Given
that video lengths in all three datasets exceed 2 seconds,
we randomly sample a 2-second clip from each video dur-
ing the training phase. During the inference phase, we
randomly sample a 2-second clip from each video in the
AVSyncl5 and Landscape test sets, using the first frame
as input for our model and all baselines. For the Greatest
Hits dataset, due to many videos exceeding 10 seconds, we
segment each video into 10-second intervals, sample a 2-
second clip from each segment, and use the first frame as
the final test set.

Expert models, model size, frozen layers: Components
are tabulated as follows. Joint Block without Expert layer
and the A-Expert remain fully trainable due to a small pa-

Modules Param. Frozen
VideoVAE 97.7TM v
AudioVAE 55.4M v
AudioVocoder 55.3M v
CLIP+proj 632M v
A-Expert 185M train
V-Expert 1.5B partial
JointBlock w/o Expert  77.7M  train

rameter size, ensuring training efficiency. The V-Expert,
with a large parameter size, is only trainable on its tempo-
ral layers (0.4B), a strategy proven effective in VideoLDM.
The video/audio VAE, vocoder and CLIP are frozen in line
with standard LDM.

Training and Inference. All the training is done within
4 H100 gpus. We conducted training and testing for each
dataset separately due to domain specificity. To account for
generation randomness, both the baselines and our JointDiT
generate 5, 3, and 3 sounding videos respectively for each
test image in the AVSync15, Greatest Hits, and Landscape
datasets for evaluation.

Layer Matching: JointDiT accommodates expert mod-
els with varying layer configurations by mapping an ex-
pert’s layer index [, to JointDiT’s block index I; as fol-
[l./B], ifl, < |N/2]
[[N/2]/B] +1, otherwise
the layers of DiT model (blocks of UNet model), and B
(1 < B < min(| Nyideo/2], | Naudio/2])) is a hyperparame-
ter; smaller B increases the number of joint blocks. In our
setting with Nyigeo = 8, Naudio = 9, and B = 1, this results

lows: [; = where N

in one input block, three joint blocks, and one output block.
Conditioning Input Methods: For V-Expert, we follow
SVD by 1) encoding the image with VAE, duplicating and
concatenating it with video latents (noise) along channel di-
mension; 2) extracting CLIP embeds for the cross-attention.
For A-Expert, we modify AudioLDM?2’s by encoding the
image with CLIP, adding it with the timestep embeds.

B. Evaluation Metric Details
B.1. Audio-Video Synchronization Metric

The Audio-Video Synchronization Metric aims to provide
a score representing the synchronization degree between a
given pair of audio and video. However, the accurate assess-
ment of this synchronization remains a challenge. Existing
methods fall into two categories: 1) one relies on a binary
classifier trained on curated paired data, consisting of syn-
chronized and unsynchronized examples [3, 6], and 2) the
other is based on the matching of audio and video peaks,
exemplified by the widely-used AV-Align [5]. The former
is constrained by the quality of curated paired data and the
strategy for curating positive (synchronized) and negative
(unsynchronized) examples, while the latter is limited by
the imprecision of calculating the Intersection over Union
(IoU) on peaks [5].

We propose an enhancement to AV-Align. Inspired
by Wang et al. [4], we treat the video flow features and
the audio onset detection curve as two sequences of dif-
ferent lengths, which represent video and audio dynamics
respectively. We employ Dynamic Time Warping (DTW), a
method designed to measure the match degree between two
sequences of different lengths, to calculate the DTW dis-
tance between the video flow sequence and the audio onset
detection sequence. To mitigate the impact of signal spikes
and absolute numerical differences between modalities, we
normalize each signal and set parts below 0.2 to 0 to fil-
ter out noisy spikes. The resulting DTW distance forms
the improved AV-Align metric, noted as AV-Align* in this
section, further optimizing the measurement of audio-video
synchronization.

We evaluated the above synchronization met-
rics on the same five settings (SVD+AudioLDM-v,
SVD+SeeingHearing, AudioLDM-v +AVSyncD, CoDi,
and JointDiT). The correlation between each group of
evaluation results and human evaluation scores on five
settings was calculated to assess their alignment with
human perception of synchronization. As Table 1 shown,
the original AV-Align and classifier methods yield lower
correlation coefficients 0.164 and 0.206, whereas the im-



| A B c D E | Corr. 1
Human Rating 1 ‘ 1.25 1.21 1.3 0.87 1.51 ‘ 1.00
AV-Align | 0357 0.502 0573 0435 036 | 0.164
classifier 1 0.488 0.5 0.511 0507 0.514 | 0.206
AV-Align* | 1352 1569 1.285 1.772 1.296 | 0.896

Table 1. Comparison of the alignment between different syn-
chronization metrics and human perception of synchronization.
The columns A-E correspond to five settings in our main text:
A: SVD+AudioLDM-v, B: SVD+SeeingHearing, C: AudioLDM-
v+AVSyncD, D: CoDi, and E: JointDiT. The column ‘Corr.” repre-
sents the absolute value of the correlation coefficient between the
synchronization scores from each metric and the human-rated syn-
chronization scores for settings A-E. ‘Corr.” serves as a measure
of the alignment of each metric with human perception of syn-
chronization. Higher Corr. indicates better alignment with human
perception of synchronization for a metric.

proved AV-Align* achieves a higher correlation coefficient
of 0.896, aligning better with human perception. It’s
note that we followed Zhang et al. [6] by using the same
classifier trained on 2-second video-audio pairs and applied
the power exponent normalization method in their work.

Finally, we adopt the enhanced metric, AV-Align*, as
our AV-align metric showed in the main text for determin-
ing all synchronization scores within our study. It’s note-
worthy that, although this metric has significantly improved
alignment with human perception of synchronization com-
pared to other metrics, it is not yet a perfect indicator. The
task of achieving perfect alignment with human perception
remains an area for future work.

B.2. Video Dynamic Metrics

Motion Score. Given that image-to-video models often
generate static videos [7], we also evaluated the dynamism
of the videos in our I2SV task using a motion score [7]. Fol-
lowing the same calculation in SVD [1], the motion score
is the sum of the average optical flow values between each
pair of adjacent frames, serving as the motion score for the
video. This metric is used to quantify the extent of video
dynamics introduced by different methods.

C. Additional Case Studies

Figure 1 provides a more extensive comparison between
vanilla-CFG and JointCFG*. The top two examples illus-
trate that our JointCFG* can generate more dynamic strik-
ing motions, a case that proves challenging for vanilla-CFG.
The bottom two examples show that JointCFG* can main-
tain the quality of dynamic scenes, such as a rooster raising
its head, with clearer details in the rooster’s head compared
to the vanilla-CFG approach. We posit that JointCFG* can
further circumvent generated samples where the original
model struggles, such as generating high-dynamic visuals
or maintaining quality during dynamic visual generation.

Vanilla

Joint

Vanilla

Joint

Figure 1. More comparison of different guidance techniques.
JointCFG(*) guidance exhibits superior dynamic visual quality.

We believe JointCFG* can exploit the bad versions com-
posed of some sub-models to amplify poorly estimated ar-
eas in the entire distribution, and then use the comparison
in CFG to avoid these poorly estimated areas, achieving
boosted performance (better generation quality).
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