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Figure A1. More Qualitative Results. BLADE not only achieves accurate 3D pose estimation, but also accurately recovers perspective
projection parameters and thus achieves state-of-the-art alignment accuracy in image space.

A1. Overview
In this supplemental document, we (1) provide additional
qualitative results on real-world images (Sec. A2); (2) ex-
amine the existing evaluation datasets and identify the need
for a close-range evaluation dataset with accurate labels
(Sec. A3); (3) report additional quantitative results of the
various methods on more datasets and with additional met-
rics (Sec. A4); (4) elaborate on the ambiguity involved in
single-image-based 3D human mesh recovery (Sec. A5);
and (5) discuss the trade-off between achieving high depth
estimation accuracy on close-range data versus far-range
data (Sec. A6).

A2. Qualitative Results on Real-World Images
In Fig. A1, A4 and A5, we show more visual results with
a comparison to recent state-of-the-art methods AiOS [21]
and Zolly [23]. We achieve significant improvement in
terms of alignment of the rendered 3D mesh to the in-
put image, accuracy of perspective distortion, as well as

the estimated 3D pose. For example, in the first row of
Fig. A1, only our method correctly estimates the camera’s
close proximity to the person’s hand and that the person
is standing, whereas AiOS and Zolly predict incorrect leg
postures and distances to the person. In the second row of
Fig. A1, both AiOS and Zolly wrongly estimate the per-
son’s left hand behind their body, whereas BLADE recov-
ers the correct position of the person’s hand and camera’s
proximity to the person’s feet. A similar phenomenon can
be observed in Fig. A4, A5, A6, and A7 as well.

Interestingly, Zolly [23] sometimes generates flattened
meshes. For example, in the second image from top left in
Fig. A4, Zolly predicts a mesh where the person’s head and
arms are flattened. This is because, different from AiOS
and our methods, Zolly directly predicts a mesh instead of
parameters of the SMPL-X model. While this design gives
Zolly more flexibility in generating difficult shapes, it can
also lead to degenerate estimation at times.

Additionally, although BLADE leverages AiOS [21] as
part of the pose estimator backbone, BLADE improves
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Figure A2. Evaluation Dataset Distributions. In the top di-
agram, we show the distribution of Tz values across different
datasets. Notably, the majority of the HUMMAN dataset has Tz

values concentrated in a small range around 1.9m. The HUM-
MAN dataset thus has much less perspective distortion compared
to close-range datasets like the SPEC-MTP[13], PDHUMAN[23],
and our BEDLAM-CC dataset. In the bottom, we show the cumu-
lative distribution function of Tz values across datasets. Notably,
our BEDLAM-CC dataset has a wider range of Tz values, and even
smaller minimum Tz values than PDHUMAN. These traits make
BEDLAM-CC a diverse evaluation dataset that is particularly well-
suited for close-range HMR.

AiOS’ pose and shape accuracy. For example, in the top
left of Fig. A6, BLADE predicts the person’s body shape
more accurately than AiOS. In the second and bottom row
in Fig. A6, predictions of the person’s legs from AiOS and
Zolly are both wrong whereas BLADE shows robustness
in both situation. In the top row of Fig. A7, BLADE cor-
rectly recovers both the orientation and the leg posture of
the person, whereas AiOS does not. In the second row of
Fig. A7, BLADE correctly recovers the position and angle
of the person’s ankles, whereas predictions from AiOS are
inaccurate.

A3. Examining the Evaluation Datasets
In this section, we examine the strengths and shortcomings
of various standard benchmark datasets used to evaluate the
task of single-image-based human mesh recovery (HMR).
We find that there is a lack of close-range test data with

Figure A3. Inaccurate Pose Labels in PDHuman[23]. We find
that a high percentage of pose labels in PDHuman do not align
with the corresponding images. In the above examples, we visu-
alize the SMPL labels superimposed on top of the corresponding
images. The SMPL renderings (gray overlays) are generated using
the authors’ original code base used for IoU calculations.

accurate ground truth annotations, and we thus introduce
BEDLAM-CC to fill this void.

In Fig. A2, we show the distribution of Tz , i.e. the depth
of the pelvis of a person, across different datasets. As men-
tioned in Fig. 3 (main paper), Tz has significant impact on
the level of perspective distortion observed in an image and
becomes more impactful to 3D HMR, the closer the person
gets to the camera. An ideal evaluation dataset for HMR
of strongly perspective images should thus contain a large
number of samples with persons within close-range to the
camera, which we loosely define to be less than 1.5 meter.
HuMMan [4]: This dataset is captured in a studio environ-
ment. A person stands in the middle of a circle of cam-
eras and performs different actions. This dataset is useful
for performing 3D reconstruction on human subjects due to
its multi-view camera setup. However, it is very limited in
terms of visual diversity due to it being captured in the same
studio environment. More importantly, as shown in Fig. A2
(red distribution), this dataset contains very limited varia-
tion in terms of Tz , distributed closely around 1.9m, farther
from the close range of <1.5m distance. Therefore, due to



Figure A4. More Qualitative Results. In addition to achieving accurate pose estimation, our method BLADE recovers precise perspective
projection parameters, ensuring the predicted 3D human mesh is well-aligned with the input image.

its limited visual diversity, Tz variation, and the absence of
close-range data with Tz < 1.5m, this dataset is not ideal
for evaluating close-range HMR methods intended to oper-
ate on images in-the-wild. Performance on it, thus, is not
reflective of performance on highly unconstrained images
in the real world.

SPEC-MTP [13]: This dataset is captured using smart-
phones in the real world with diverse identities, lighting
conditions, and poses. It is captured by having one per-
son move the camera around another person as they pose
for the camera. 3D pose labels are then generated from
the video frames. As shown in Fig. A2 (yellow distribu-
tion), SPEC-MTP’s Tz values fall within the desired 1.5m
threshold and center around 1m. This Tz distribution and

the appearance diversity from real-world capture settings
makes SPEC-MTP[13] a good dataset for evaluating close-
range HMR methods. We find the provided labels to be
mostly accurate, while inevitable errors in calibration and
video-based reconstruction lead to inaccurate pose labels in
a small portion of the test samples.

PDHuman [23]: This is a synthetic dataset generated us-
ing 630 photogrammetry-scanned human models from Ren-
derpeople [2] and animated using Mixamo [1]. 3D labels
are converted to SMPL by optimizing for a set of pose
and shape parameters that best fit the 3D human models
used to generate the rendered data. As shown in Fig. A2
(blue distribution), PDHuman’s Tz values are mostly within
1m, leading to high levels of perspective distortion in this



dataset. However, we find that a high percentage of its pose
labels are inaccurate with respect to the input images. In
Fig. A3, we visualize the SMPL labels overlaid on top of the
corresponding images. The SMPL renderings (gray over-
lays) are generated by using the scripts provided for IoU
calculations in the authors’ original code base. We postu-
late that this inaccuracy may have been the result of inaccu-
rate conversion from the animated RenderPeople models to
SMPL.

Considering that quantitative results on PDHuman may
not also correctly reflect actual performance, we conclude
that there is a lack of accurate and diverse data to quan-
titatively benchmark performance of close-range HMR for
images taken at a Tz depth closer than 1m. Therefore, we
curate a new dataset with accurate labels to facilitate evalu-
ation of close-range HMR.

A3.1. BEDLAM-CC: A Close-Range Synthetic
Dataset with Accurate 3D Labels

We create a new close-range evaluation dataset utilizing as-
sets provided with the BEDLAM dataset [3] and name our
dataset BEDLAM-CC. As discussed in the main paper, per-
spective distortion is non-linear w.r.t. the distance between
the camera and the subject [18]. In particular, it changes
rapidly when the distance gets closer (0.3m to 1.2m), be-
cause of its inverse relationship to distance. The perspective
projection gradually approximates orthographic projection
at distances of 5m and higher. Therefore, to concentrate our
evaluation on close-range HMR, we enforce that 80% of our
dataset locates Tz within the range of 0.5m ≤ Tz ≤ 1.2m
and the remaining samples are in the range of 1.2m < Tz ≤
10m. From the 2 million generated images there are a total
of 1314 images in the evaluation split.

We carefully curate the camera poses in our dataset to
generate images with diverse viewpoints relative to the per-
son. With a Tz value being sampled as described above, the
camera is positioned on a sphere with the radius given by
Tz and randomly sampled spherical coordinates θ ∈ [0, 2π]
and ϕ ∈ [0.1π, 0.7π], where θ is the azimuth angle and ϕ
represents the elevation. The camera rotation is evaluated
by a LookAt() function towards a randomized target bone
along the SMPL-X spine given by a randomized bone index
i ∈ [0, 3, 6, 9, 12, 15] and an added random noise vector
v ∈ R3. To keep the person at a reasonable size relative
to the frame we set the focal length using a dolly zoom
with a default value fd of 15mm at 1m distance with a
camera sensor size of 36x36mm. We then uniformly ran-
domize the focal length fGT ∈ [0.7, 1.3] · fd. In addition,
we randomize the lighting setup including skylight (back-
ground image and intensity), and directional sun light (po-
sition, color, intensity). We show example images of our
BEDLAM-CC dataset in Figure A11. Since our dataset is
generated through SMPL-X and Unreal Engine, we do not

need to convert the data to SMPL-X format and thus avoid
conversion errors.

A4. Additional Quantitative Results
In this section, we report additional quantitative re-
sults for various evaluation datasets using more metrics.
Specifically, we test the various methods on the SPEC-
MTP [13], PDHUMAN [23], BEDLAM-CC, and HUM-
MAN [4] datasets. We use the commonly used met-
rics, including, Mean Per-Joint Position Error (MPJPE),
Procrustes Analysis Mean Per-Joint Position Error (PA-
MPJPE), Per-Vertex Error (PVE), mean Intersection over
Union (mIoU), and Body Part mean Intersection over Union
(P-mIoU). As discussed in the main paper, we introduce
new metrics to evaluate the accuracy of recovered perspec-
tive projection parameters. Specifically, we measure the ac-
curacy of the recovered focal length as its percentage error
relative to the ground truth focal length:

Ef = |fpred − fGT |/fGT . (1)

Given that Tz has an inverse relationship with respect to
the amount of distortion in the image (Fig. 3, main pa-
per), whereas (Tx, Ty) do not, we separately evaluate Tz

and (Tx, Ty) errors as ETz
and ETxy

in meters. Addition-
ally, since Tz’s accuracy is less important at far distances,
we also calculate an inverse Tz error E1/Tz

, reflecting this
property:

ETxy
= ∥T pred

xy − TGT
xy ∥2, (2)

ETz
= |T pred

z − TGT
z |, (3)

E1/Tz
= |1/T pred

z − 1/TGT
z |. (4)

In Table. A1, we show that BLADE achieves state-of-
the-art accuracy for a majority of the metrics across the four
datasets: SPEC-MTP[13], PDHUMAN[23], BEDLAM-
CC, and HUMMAN[4]. Among these SPEC-MTP[13],
PDHUMAN[23], and BEDLAM-CC are perspectively dis-
torted datasets with many persons with Tz < 1.5m. On
perspectively distorted datasets, BLADE is state of the art
in terms of recovering accurate perspective projection pa-
rameters (measured by ETz

, E1/Tz
, ETxy , and Ef ) and

accurate 3D mesh recovery (measured by PVE). Addition-
ally, BLADE achieves joint accuracies (measured by PA-
MPJPE and MPJPE) better than or comparable to state-of-
the-art methods. The accurate recovery of projection pa-
rameters and 3D geometry results in state-of-the-art align-
ment from the rendered mesh to the input image. This
is shown by BLADE’s significantly higher mIoU and P-
mIoU performances. For example, on SPEC-MTP[13],
BLADE’s mIoU is 69.9%, whereas the second best method
PARE[12] achieves 55.8%. Similarly, on PDHUMAN [23]
and BEDLAM-CC, BLADE achieves mIoU values of 67.3%



Figure A5. More Qualitative Results. Beyond accurate pose estimation, our approach BLADE effectively reconstructs perspective
projection parameters, allowing the predicted 3D human mesh to align closely with the input image.

and 72.8%, respectively, whereas the second best meth-
ods achieve 53.0% and 54.6%. Moreover, BLADE con-
sistently achieves high IoU values of around 70%, whereas
prior methods show significant degradation on the three per-
spectively distorted datasets. On the less distorted HUM-
MAN[4] dataset, we achieve state-of-the-art accuracy on
Tz estimation (ETz

, E1/Tz
) and focal length estimation

(Ef ). BLADE achieves significantly better joint precisions
(PA-MPJPE, MPJPE) and 3D mesh reconstruction than the
recent state-of-the-art methods (AiOS[21], SMPLer-X[5],
and TokenHMR[7]) and is comparable to Zolly.

In addition to the close-range benchmarks, we evaluate
the methods on 3DPW [22] and HUMAN3.6M [9], which
are the captured farther away and thus less perspectively

distorted. These two datasets have average pelvis depths at
around 5m and thus exhibit much less perspective distortion
of the person. We tested all models on 3DPW without train-
ing with 3DPW. Additionally, as 3DPW images are often
crowded with people and the test subjects can be very far
away from the camera and thus tiny in the image, we retrain
a version of BLADE that processes cropped images instead
of the original full images. Although our model is opti-
mized for close-range pose estimation, our method also out-
performs recent state-of-the-art methods (AiOS, SMPLer-
X, Zolly) on the farther-away 3DPW dataset, demonstrat-
ing its robustness to different use cases. On HUMAN3.6M,
we perform similar to the SOTA models, but we notice
that the HUMAN3.6M test set only contains 2 subjects and



Figure A6. More Qualitative Results. Our approach BLADE not only estimates 3D shape and pose precisely but also accurately retrieves
perspective projection parameters, enabling the predicted 3D human mesh to align seamlessly with the input image.

might not be a representative benchmark.

A5. Single-Image Ambiguity in 3D Human
Mesh Recovery (3D HMR)

In Fig. A9 and A10, we visually illustrate the ambiguity in
single-image human mesh recovery. To achieve both ac-
curate 3D mesh recovery and 2D alignment, one needs to
solve for both the 3D mesh of the person as well as the
camera intrinsic and extrinsic parameters. However, given
that none of the aforementioned parameters is known, and
that they are heavily entangled, this problem is well known
to be ill-posed and has potentially infinite solutions. For
example, as shown in Fig. A9, it is difficult for a model to
correctly predict the two poses from the input images be-
cause it has no information about the shape of the person’s
legs and shoes. Moreover, due to the nature of projected
geometry, the reconstructions are always up to scale unless
additional knowledge of scale is provided, e.g. the camera’s
movement is measured in physical units. For example, as
shown in Fig. A10, images of people of different sizes can

result in very similar images. Therefore, the reverse prob-
lem of reconstructing the person from the images can also
result in 3D meshes of different sizes.

Human Height Bias While the aforementioned ambigui-
ties are inherent to the problem, much prior work [17, 19]
have leveraged the regularity of the human body to arrive
at reasonable solutions for this ill-posed problem. For ex-
ample, one such regularity [20] is that 95% of men have a
height between 163.2cm and 193.6cm and 95% of women
have a height between 150.6cm and 178.84cm. However,
it is possible that the model learns a very narrow range of
human height to make the problem trivial to solve. There-
fore, we visualize the height distribution of BEDLAM-CC
in Fig. A8 (left) along with the human population distribu-
tion. The height distribution in our dataset BEDLAM-CC,
which uses neutral SMPL-X, is quite similar to the combi-
nation of adult male and female human population (in me-
ters: BEDLAM-CC: mean 1.714, σ=0.095, real-world male
population: 1.777, σ=0.078, female population: 1.662,
σ=0.067 [20]). Furthermore, both our ground truth test data



Figure A7. More Qualitative Results. BLADE not only achieves accurate pose estimation, but also recovers accurate perspective projec-
tion parameters and thus can align the predicted 3D human mesh to the input image well.

and BLADE ’s predictions (Fig. A8, right) have significant
diversity. However, we recognize that more samples should
be added for heights <1.5m and >1.85m and that the distri-
bution of heights should be better normalized without gaps.

Figure A8. Left: Height distribution of BEDLAM-CC against
world adult population [Roser et al., 2021] Right: Body height dis-
tribution of ground truth and prediction from BLADE on SPEC-
MTP, PDHuman, and HuMMan.

A6. Trade-Off between Close and Far Range
Tz Estimation

For Tz estimators trained without our BEDLAM-CC dataset,
we observe that it is difficult for them to achieve accurate

Figure A9. The Ambiguity of Single Image 3D Human Pose
Estimation. Although being significantly different in pose and
distance to the camera (a) both presented configurations result in
similar camera views (b, c). Therefore, due to the ill-posed na-
ture of single-image 3D pose estimation, different combinations
of pose and camera distance can result in valid but incorrect re-
constructions.

Tz estimation for both close and far range images. The
various Tz estimators with different backbones oscillate be-
tween achieving high accuracy on close-range or on far-



Methods SPEC-MTP [13] (real-world capture) PDHUMAN [23] (synthetic)

ETz
↓ E1/Tz

↓ ETxy
↓ Ef↓ PA-MPJPE↓ MPJPE↓ PVE↓ mIoU↑ P-mIoU↑ ETz

↓ E1/Tz
↓ ETxy

↓ Ef↓ PA-MPJPE↓ MPJPE↓ PVE↓ mIoU↑ P-mIoU↑

HMR [10] - - - - 73.9 121.4 145.6 48.8 16.0 - - - - 62.5 91.5 106.7 48.9 21.7
HMR-f [10] - - - - 72.7 123.2 145.1 52.3 20.1 - - - - 61.6 90.2 105.5 45.2 20.4
SPEC [13] - - - - 76.0 125.5 144.6 49.9 18.8 - - - - 65.8 94.9 109.6 43.4 19.6
CLIFF [16] - - - - 74.3 115.0 132.4 53.6 23.7 - - - - 66.2 99.2 115.2 51.4 24.8
PARE [12] - - - - 74.2 121.6 143.6 55.8 23.2 - - - - 66.3 95.9 116.7 48.2 20.9
GraphCMR [14] - - - - 76.1 121.4 141.6 53.5 22.0 - - - - 62.0 85.8 98.4 47.9 21.5
FastMETRO [6] - - - - 75.0 123.1 137.0 53.5 20.5 - - - - 58.6 83.6 95.4 50.1 22.5
Zolly [23] 0.899 0.394 0.906 106.3 67.4 114.6 126.7 62.3 30.4 0.255 0.355 0.051 27.3 49.9 70.7 82.0 53.0 26.5
SMPLer-X* 0.980 0.450 0.109 112.1 55.5 90.9 102.6 53.0 15.9 2.223 1.030 0.126 55.0 96.8 148.2 161.2 47.6 17.1
TokenHMR* 0.909 0.436 0.095 112.1 64.2 107.1 124.3 49.8 19.0 2.280 1.034 0.068 55.0 92.1 141.5 156.7 53.0 27.8
AiOS* 1.035 0.464 0.121 112.1 62.8 101.6 110.9 48.7 11.3 2.312 1.024 0.149 55.0 106.6 170.6 183.4 49.5 16.0
Ours 0.129 0.114 0.056 16.3 61.0 105.3 111.9 68.6 39.8 0.106 0.176 0.043 21.6 49.6 69.7 80.5 67.3 44.6
Ours (real-world) 0.127 0.112 0.044 15.9 56.7 94.1 99.6 69.9 41.5 0.107 0.178 0.049 22.3 61.4 90.1 102.6 65.2 41.4

BEDLAM-CC (synthetic) HUMMAN [4] (studio capture)

ETz↓ E1/Tz
↓ ETxy↓ Ef↓ PA-MPJPE↓ MPJPE↓ PVE↓ mIoU↑ P-mIoU↑ ETz↓ E1/Tz

↓ ETxy↓ Ef↓ PA-MPJPE↓ MPJPE↓ PVE↓ mIoU↑ P-mIoU↑
HMR [10] - - - - - - - - - - - - - 30.2 43.6 52.6 65.1 39.5
HMR-f [10] - - - - - - - - - - - - - 29.9 43.6 53.4 62.7 34.9
SPEC [13] - - - - - - - - - - - - - 31.4 44.0 54.2 51.4 25.6
CLIFF [16] - - - - - - - - - - - - - 28.6 42.4 50.2 68.8 44.7
PARE [12] - - - - - - - - - - - - - 32.6 53.2 65.5 66.5 38.3
GraphCMR [14] - - - - - - - - - - - - - 29.5 40.6 48.4 61.6 37.5
FastMETRO [6] - - - - - - - - - - - - - 26.3 38.8 45.5 68.3 45.2
Zolly [23] 0.539 0.634 0.081 46.1 68.8 107.8 131.8 51.8 21.2 0.228 0.072 0.034 9.4 22.3 32.6 40.0 71.2 45.1
SMPLer-X* 2.057 1.172 0.087 134.9 69.5 120.3 140.0 53.0 21.3 2.461 0.300 0.125 41.6 38.7 56.4 65.8 51.8 11.1
TokenHMR* 2.378 1.200 0.096 134.9 59.9 114.3 136.4 54.1 22.3 2.599 0.307 0.044 41.6 46.4 72.2 82.0 60.9 31.1
AiOS* 2.340 1.197 0.111 134.9 71.6 125.7 143.0 54.6 19.9 2.311 0.292 0.033 41.6 66.1 91.8 99.4 72.0 44.3
Ours 0.326 0.306 0.066 26.2 59.4 90.5 111.6 72.7 44.5 0.188 0.058 0.055 8.5 24.9 44.4 56.3 69.8 37.9
Ours (real-world) 0.325 0.305 0.065 25.7 57.8 85.8 106.8 72.8 44.5 0.187 0.058 0.056 8.3 23.8 41.1 52.3 70.6 38.2

Table A1. Results of SOTA methods on the SPEC-MTP [13], PDHUMAN [23], BEDLAM-CC, and HUMMAN [4] datasets. For baselines
at the top of the tables, we use the results reported by Zolly [23] and omit the ones not available. Additionally, we re-evaluate newer
state-of-the-art methods AiOS [21], SMPLer-X [5], and TokenHMR [7]. These models are noted using ”*”.

3DPW (not in training, avg. Tz=4.6m) PA-MPJPE↓ MPJPE↓ PVE↓
AiOS 50.5 80.8 95.1
SMPLer-X 49.5 88.2 92.3
Zolly 47.9 76.2 89.8
Ours (BLADE) 45.7 75.1 89.5
H3.6M (in training, avg. Tz=5.1m) PA-MPJPE↓ MPJPE↓ PVE↓
AiOS 46.3 68.9 no
SMPLer-X 38.9 75.3 ground
Zolly 32.3 49.4 truth
Ours (BLADE) 40.5 55.1

Table A2. Results of SOTA methods on less perspectively dis-
torted datasets (3DPW [22] and HUMAN3.6M [9]). All methods
are evaluated without training on 3DPW.

range images, exemplified by their accuracies on the close
range dataset SPEC-MTP [13] and the farther range dataset
HUMMAN [4]. For example, when using Sapiens[11] as
the backbone for our Tz estimator, its best Tz error on
SPEC-MTP[13] is 21cm, but it scores a high Tz error of
70cm onHUMMAN. On the other hand, using a model
checkpoint with a low Tz error of 60cm on HUMMAN re-
sults in an 85cm error on SPEC-MTP. Similarly, when
using DepthAnythingV2 [24] as the backbone, our Tz es-
timator can achieve a low Tz error of 15.4cm on SPEC-
MTP [13], but at the same time suffers from a high Tz error
of 23cm on HUMMAN [4]. When using a checkpoint that
can achieve 3.1cm Tz error on HUMMAN, the model in turn
suffers from a high Tz error of 67.6 on SPEC-MTP.

Inspired by recent works in monocular depth estima-

Figure A10. Ambiguous Human Size from a Single Image. The
problem of metric-scale mesh estimation problem is inherently ill-
posed, and capturing people of different sizes from different dis-
tances can result in similar images. The side view reveals the
actual sizes of the subjects and their distances Tz to the camera.
When the image of a taller person captured farther away can be
similar to the image of a shorter person captured at a closer dis-
tance. The corresponding Tz values are also shown on the left.
However, given that the heights of 95 % of all human [8] (±2 stan-
dard deviations) lie within a small range, the size variation thus
correspond to a narrow Tz variation as shown on the left curve.
The mean size is the blue inset and the range of ±2 standard devi-
ations are shown as yellow and violet insets.

tion [24, 25], we focus on providing the networks with
more high-quality close-range training samples by curat-



Figure A11. Examples of our synthetic BEDLAM-CC dataset. The strong variation in lighting and camera angles as well as occasional
extreme close-up distortion are intentionally part of the data.

ing our own BEDLAM-CC dataset (Sec. A3). With more
high-quality close-range training samples, our final Tz es-
timator achieves a low error of 12.7cm on the close-range
dataset SPEC-MTP [13] while maintaining a reasonable
Tz error of 18.7cm on the farther-range HUMMAN dataset
(Table. A1).

A7. Speed

Currently, our implementation targets quality over speed
although not being unreasonably slow. Processing 1 im-
age on an RTX3090 GPU takes 0.009s for depth estima-
tion and 0.33s for pose estimation. For quantitative evalua-
tions, we ran the camera solver for 50 iterations (0.963s) to
ensure good accuracy but found that 10 iterations (0.210s)
give good accuracy already. The optimization time can be



further improved by using Nvdiffrast [15] instead of Py-
Torch3d.

Dataset license information. The assets of the BEDLAM
dataset [3] have been published by Max Planck Institute for
Intelligent Systems under a No distribution license1.

With the publication of our work, we will publish
• our code changes with respect to the BEDLAM dataset to

render the BEDLAM-CC dataset, and
• instructions to render the BEDLAM-CC dataset.
For recreation of the BEDLAM-CC dataset, the render
pipeline needs to be set up according to the guidelines of
the BEDLAM dataset. We will publish our data under li-
cense terms to allow usage for research purposes.

Image Sources
• Main Paper Figure 1: Adobe Stock image ids: 16532441,

688449553, 868801378.2

• Main Paper Figure 4: Adobe Stock Image id: 789510049.
• Main Paper Table 1: Row 1-2 Adobe Stock image ids:

415527042, 344928073, 71230339, 605587274. Last
row: Images from Zolly [23].

• Figure A1: Adobe Stock image ids: 184701266,
21677394, 60240732.

• Figure A4: Adobe Stock image ids: 859644245,
81892568, 21197764, 902825438.

• Figure A5: Adobe Stock image ids: 892029686,
71230339, 688449514, 615119495.

• Figure A6: Adobe Stock image ids: 1061297360,
765162341, 547882981, 355426702.

• Figure A7: Adobe Stock image ids: 348174880,
583910785, 219801712, 63038620.
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