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1. Proof of Gradient Matching

This section provides a detailed proof of gradient match-
ing that the gradient of step k is matched with those of the
previous k-1 steps.

Preliminary. Let’s start by revisiting the definitions of the
inner loop of n steps, during which the model’s parameters
transition from Θ to Θ̂. We represent the loss at each step
as {L1,L2, ...,Ln}, and the parameter updating trajectory
as {θ1, θ2, ..., θn+1}, with θ1 and θn+1 corresponding to Θ
and Θ̂ respectively. We use Li(θj) to denote the loss of the
i-th step on parameters θj . During the inner loop, the update
process is performed with a small learning rate α:

θ2 = θ1 − α∇L1(θ1)

θ3 = θ2 − α∇L2(θ2)

...
θn+1 = θn − α∇Ln(θn).

(1)

Objective. To prove that for any i = k, step k is gradient-
matched with the previous k-1 steps as:

Lk(θk) = Lk(θ1)− α

k−1∑
i=1

∇Li(θ1) · ∇Lk(θ1) +O(α2),

(2)
it is adequate to demonstrate that the following equation
holds for any loss function L:

L(θk) = L(θ1)− α

k−1∑
i=1

∇Li(θ1) · ∇L(θ1) +O(α2). (3)

Base Case. When i equals 1, it is evident that L(θi) =
L(θ1), so Eq. (3) holds. When i equals 2, we can substitute
Eq. (1) into L(θ2) and conduct a first order Taylor expan-
sion on it:

L(θ2) = L(θ1)− α∇L1(θ1) · ∇L(θ1) +O(α2), (4)

thus Eq. (3) is also valid.

Inductive Step. Given that Eq. (3) is true for arbitrary i ≤
k, we proceed to establish its validity for the case when i
equals k + 1. Plugging Eq. (1) and Eq. (3) into L(θk+1)

yields:

L(θk+1) = L(θk)− α∇Lk(θk) · ∇L(θk) +O(α2)

= L(θ1)− α

k−1∑
i=1

∇Li(θ1) · ∇L(θ1) +O(α2)

− α(∇Lk(θ1) +O(α))(∇L(θ1) +O(α)) +O(α2)

= L(θ1)− α

k∑
i=1

∇Li(θ1) · ∇L(θ1) +O(α2).

(5)

Note that we substitute ∇Lk(θk) into Eq. (3) to obtain:

∇Lk(θk) = ∇Lk(θ1)− α

k−1∑
i=1

∇Li(θ1)Hk(θ1) +O(α2).

(6)
Hk(θ1) is a Hessian left-multiplied by ∇Li(θ1). Eq. (6)
is simplified as ∇Lk(θ1) + O(α) in Eq. (5), and ∇L(θk)
follows the same process.

Conclusion. We have shown that Eq. (3) is valid for all
i = k and for any loss function L. Therefore, our objective
of Eq. (2) is successfully demonstrated.

2. Other Results.
We illustrate detailed results of Arith, as shown in Tab. 1.
We also provide results from five datasets within the multi-
modal WILDS benchmark [5] as mentioned in main text.
AMAZON, CAMELYON17 [1], CIVILCOMMENTS [3],
IWILDCAM [2], and FMOW [4] present diverse challenges
across multiple domains and modalities, and we adopt the
hyperparameter configuration from [6] to ensure consis-
tency and comparability in our experiments.
• AMAZON comprises 1.4 million customer reviews from

7,676 customers, with the goal of predicting a score (1-5
stars) for each review.

• CAMELYON17 consists of 450,000 lymph node scans
from five hospitals for cancer detection.

• CIVILCOMMENTS includes 450,000 comments col-
lected from online articles, each annotated for toxicity
and mentions of demographic identities.

• IWILDCAM contains over 200,000 wildlife photos cap-
tured by stationary cameras across 324 locations, aimed
at identifying 186 species.

• FMOW features satellite images from five regions over a
span of 16 years, encompassing 62 categories.



3. Other Analysis.
Why a balanced positioning? The good balance refers
to updating the model towards the centroid of domain ex-
perts, which integrates model averaging but differs in some
key aspects (Sec. 2.5). This averaging can be viewed as a
parameter-efficient form of ensemble learning, with a sin-
gle model estimating the ensemble output of multiple do-
main experts. Consider a update trajectory {θ1, θ2, ..., θn},
where θ̂ = 1

n

∑n
i=1 θi and f(·) is the model’s output. The

Taylor expansion of the output ensemble is:

1

n

n∑
i=1

f(θi) = f(θ̂)+
1

n

n∑
i=1

(θi− θ̂)T∇f(θ̂)+O(α). (7)

The second term equals 0 because
∑n

i=1(θi − θ̂) = 0, and
the third term is O(||maxni=1(θi − θ̂)||2). Along the same
update trajectory, the different domain-optimal parameters
are relatively close to each other, resulting in a smaller (θi−
θ̂), thus f(θ̂) ≈ 1

n

∑n
i=1 f(θi), indicating that our method

closely estimates the ensemble output of domain experts.
Discussion about computation and memory cost. Our
computation and memory costs are similar to other meta-
learning methods. The computation cost primarily arises
from backpropagation, which occurs only in the inner loop
that we do not modify, thus keeping this cost comparable
to other methods. Although increasing the number of steps
raises costs, all comparisons are conducted with the same
number of steps. For example, the training time for Fish
and our method with 5000 iterations on the PACS dataset is
85.4 min and 91.9 min, respectively. The main memory cost
is due to the computation graph generated by backpropaga-
tion. Our method continuously accumulates the gradients
during the inner loop to update parameters without gener-
ating additional computation graphs. As a result, the ex-
tra memory overhead is limited to storing these gradients,
which is no larger than the size of the model’s inherent
parameters. For example, it is 90M for ResNet50, which
is negligible compared to the total cost of approximately
6000M with a batch size of 32 for three domains.
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Table 1. Detailed results on DomainBed benchmark.

Domain Index PACS VLCS OfficeH TerraInc DomainNet

Domain 1 85.9 ± 0.5 98.7 ± 0.3 64.6 ± 0.8 52.3 ± 1.9 59.0 ± 0.4

Domain 2 81.3 ± 1.0 64.3 ± 0.8 55.3 ± 0.9 42.4 ± 2.5 19.7 ± 0.2

Domain 3 97.1 ± 0.5 76.0 ± 0.9 78.3 ± 0.4 57.5 ± 1.3 47.0 ± 0.3

Domain 4 81.8 ± 1.0 78.6 ± 1.0 79.4 ± 0.6 40.2 ± 2.3 12.7 ± 0.3

Domain 5 - - - - 59.4 ± 0.4

Domain 6 - - - - 51.1 ± 0.7

Avg 86.5 ± 0.3 79.4 ± 0.3 69.4 ± 0.1 48.1 ± 1.2 41.5 ± 0.1

Table 2. Results on AMAZON (%)

Method Average acc 10th acc Worst acc

ERM 70.3 50.7 4.0
Fish 70.6 51.1 5.3
Arith 70.7 52.0 5.3

Table 3. Accuracy on CAMELYON17 (%)

Method 20 21 22 23 24 25 26 27 28 29 Avg

ERM 49.2 30.2 73.6 74.8 64.4 60.8 57.0 37.8 89.6 77.3 73.1
Fish 52.4 36.0 72.3 77.5 69.0 65.1 59.3 43.6 90.0 77.6 74.8
Arith 54.4 33.8 83.6 75.2 72.5 69.5 64.0 40.7 90.1 79.9 76.6

Table 4. Accuracy on CIVILCOMMENTS (%)

Method N1 N2 N3 N4 N5 N6 N7 N8 T1 T2 T3 T4 T5 T6 T7 T8 Avg

ERM 82.8 84.4 72.0 89.9 77.8 83.8 70.5 71.2 82.7 82.8 78.7 79.0 77.1 76.1 80.7 80.5 87.4
Fish 84.9 86.4 76.8 90.6 80.9 85.5 72.5 73.9 79.8 79.9 73.2 76.5 74.1 76.3 80.1 79.6 87.9
Arith 87.8 89.3 77.9 91.5 80.6 85.4 73.5 72.1 77.3 76.1 73.2 75.0 74.8 77.1 80.9 81.1 90.0

Table 5. Results on IWILDCAM (%)

Method Average acc Recall macro F1 macro

ERM 61.6 23.4 20.7
Fish 62.2 22.7 21.1
Arith 63.2 25.2 22.5

Table 6. Accuracy on FMOW (%)

Method 2016 2017 Asi Eur Afr Ame Oce Avg

ERM 53.4 47.0 51.9 54.8 33.3 54.4 58.7 51.6
Fish 53.7 47.5 52.7 55.0 33.9 54.6 59.0 52.0
Arith 53.8 47.9 54.5 54.8 34.1 54.2 57.2 52.2
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