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A. Appendix

A.1. Training and Inference Algorithms

Algorithm 1 illustrates the training and inference details of
the SOYO framework, which are discussed in Sec. 3.2.

Algorithm 1 SOYO Algorithms for Domain Incremental
Learning
Input: Training set (Xt,Yt), test set (X ′

t ), backbone net-
work f
Output: The predicted results y′ of the test set

1: # 1. Training stage
2: for t = 1 to T do
3: for (x, y) in (Xt,Yt) do
4: Train the additional parameters ϕt

5: Compress the domain features XD as Gaussian
distribution parameters θ = {λk, µk,Σk}Kk=1 us-
ing Eq. (4) and Algorithm 2

6: end for
7: if t > 1 then
8: Resample the pseudo-domain features X̃D with

parameters θ using Eq. (5)
9: for x̃D in X̃D do

10: Train the MDFN parameters ∆ = {δ1, δ2, δ3}
using Eq. (2)

11: end for
12: end if
13: end for
14: # 2. Inference stage
15: for t = 1 to T do
16: for x′ in {X ′

t}Tt=1 do
17: Predict the domain label of x′ as t̂ using MDFN
18: Output the results using the backbone network f

and the additional parameters ϕt̂ as y′

19: end for
20: end for

A.2. Expectation-Maximization Algorithm
Algorithm 2 presents the Expectation-Maximization (EM)
algorithm used in the Gaussian mixture compressor. We
abbreviate {xl

τ,i}
Nτ
i=1 as {x1, x2, . . . , xN} for brevity.

A.3. Details of Evaluation Metrics
The average classification accuracy, AT , represents the
mean test accuracy across the first T domains after training
on the T -th domain. It is calculated as:

AT =
1

T

T∑
i=1

Bi,T , (7)

where B ∈ RT×T is an upper triangular matrix, and Bi,j

indicates the test accuracy of the i-th domain after training
on the j-th domain.

The forgetting degree, FT , measures the performance
degradation on previous domains caused by learning new
domains. It is calculated as:

FT =
1

T − 1

T−1∑
i=1

BWTi, (8)

BWTi =
1

T − i

T∑
j=i+1

(Bi,j −Bi,i), (9)

where BWTi represents the mean backward transfer degra-
dation for the i-th domain.

The parameter selection accuracy, ST , reflects the ac-
curacy of predicting domain-specific parameters, which is
equivalent to the domain label prediction accuracy. ST is
defined as the average parameter selection accuracy across
the first T domains, computed as:

ST =
1

T

T∑
i=1

S′
i, (10)

where S′
i denotes the parameter selection accuracy for the

i-th domain.
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Algorithm 2 EM Algorithm for Gaussian Mixture Com-
pressor

Require: Dataset {x1, x2, . . . , xN}, number of Gaussian
components K, convergence threshold ϵ

Ensure: Estimated parameters θ = {λk, µk,Σk}Kk=1

1: Initialize parameters λ
(0)
k , µ

(0)
k , Σ

(0)
k for k =

1, 2, . . . ,K
2: Set iteration counter t← 0
3: repeat
4: E-step (Expectation step):
5: for i = 1 to N do
6: for k = 1 to K do
7: Compute the responsibility

γ
(t)
ik =

λ
(t)
k · N (xi | µ(t)

k , Σ
(t)
k )∑K

j=1 λ
(t)
j · N (xi | µ(t)

j , Σ
(t)
j )

8: end for
9: end for

10: M-step (Maximization step):
11: for k = 1 to K do
12: Compute the effective number of samples N (t)

k =∑N
i=1 γ

(t)
ik

13: Update the mixing coefficient λ(t+1)
k =

N
(t)
k

N

14: Update the mean µ
(t+1)
k =

1

N
(t)
k

∑N
i=1 γ

(t)
ik xi

15: Update the covariance matrix Σ
(t+1)
k =

1

N
(t)
k

∑N
i=1 γ

(t)
ik (xi − µ

(t+1)
k )(xi − µ

(t+1)
k )⊤

16: end for
17: Compute the log-likelihood lnL(t+1) =∑N

i=1 ln
(∑K

k=1 λ
(t+1)
k · N (xi | µ(t+1)

k , Σ
(t+1)
k )

)
18: Compute the log-likelihood increment ∆L =∣∣lnL(t+1) − lnL(t)

∣∣
19: Update the iteration counter t← t+ 1
20: until ∆L < ϵ
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