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1. Related Works
1.1. State Space Model

Since its introduction in 2017, Transformer [56] has
quickly become the preferred model framework for re-
searchers due to its strong performance. However, as the
model scales and sequences become longer, its limitations
have surfaced. One major drawback is the quadratic growth
in computational complexity of the self-attention mech-
anism with increased context length. Mamba [21] ad-
dresses these issues by using Selective State Space Mod-
els (SSMs) to improve traditional state space models and
incorporating a hardware-aware parallel algorithm for re-
current operations. Vim [85] (Vision Mamba) is the first
SSM model adapted for vision tasks. It uses positional em-
beddings and bidirectional state space models to achieve
high performance, particularly on high-resolution images.
VMamba [40] extends Mamba by providing a global re-
ceptive field with linear complexity. MambaMLP [51] is
a new architectural component based on Mamba, designed
to enhance feature mixing and representation learning by
combining Mamba with an MLP, thereby improving per-
formance on visual tasks. The new SSD (State Space Du-
ality) algorithm proposed by Mamba-2 [15] can fully uti-
lize matrix multiplication units on modern hardware, mak-
ing it 2-8 times faster than the vanilla Mamba. The suc-
cessful applications of the Mamba in many computer vision
tasks [28, 62, 65] inspired us to adapt it to the pre-trained
X-ray large model for medical report generation.

2. Dataset and Evaluation Metric

o IU X-ray Dataset [17] ' published in 2016 is one of
the most frequently used publicly available medical image
datasets for medical report generation. It contains 7,470
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images and 3,955 radiology reports, with each report asso-
ciated with either frontal or both frontal and lateral view
images. Each report is divided into four sections: Indi-
cation, Comparison, Findings, and Impression. For a fair
comparison, we used the same dataset split protocol as
R2GenGPT [68], dividing the dataset into training, testing,
and validation sets with a ratio of 7:1:2.

e MIMIC-CXR Dataset [32] ? is one of the largest pub-
licly available chest X-ray datasets, containing free-text ra-
diology reports. These records from 2011-2016 include
377,110 radiographic images and 227,835 radiology re-
ports collected from 65,379 patients at the Beth Israel Dea-
coness Medical Center Emergency Department in Boston,
Massachusetts. For fair comparison, we used the same
dataset split protocol as R2GenGPT, with 270,790 samples
for training the model, and 2,130 and 3,858 samples for val-
idation and testing sets, respectively.

o CheXpert Plus Dataset [7] ° is a new radiology dataset
designed to enhance the scale, performance, robustness,
and fairness of deep learning models in the field of radi-
ology. This dataset includes 223,228 chest X-rays (in DI-
COM and PNG formats), 187,711 corresponding radiol-
ogy reports (de-identified and parsed into 11 sections), de-
identified demographic data from 64,725 patients, 14 chest
pathology labels, and RadGraph [30] annotations. For a
fair comparison, we followed the dataset split protocol used
in R2GenCSR [63] which adopted Findings as the ground
truth and split the training/validation/testing subset based on
the ratio 7:1:2. The training subset with 40,463 samples, the
validation subset with 5,780 samples, and the testing subset
with 11,562 samples. Given that current researchers tend to
focus on the Findings section of the dataset rather than the
Impressions section, and considering that the Impressions
often contains a significant amount of irrelevant informa-
tion that could negatively impact the model’s performance,

2https://physionet.org/content/mimic-cxr/2.0.0/
3https://github.com/Stanford-AIMI/chexpert-plus
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we have chosen to use the Findings section, as it contains
precise and relevant medical report information.

More in detail, CIDEr [57] evaluates text through TF-
IDF weighted n-gram matching, placing greater emphasis
on the importance of words; BLEU [47] evaluates text qual-
ity through n-gram matching; ROUGE-L [35] evaluates text
using the longest common subsequence; METEOR [2] im-
proves upon BLEU by considering synonyms and word or-
der.

3. Implementation Details

e Pre-training Stage. Both MambaXray-VL-Base and
MambaXray-VL-Large were pre-trained for 100 epochs,
with batch sizes set at 256 and 128, respectively. The base
learning rate, based on a batch size of 256, was set to 1.5e-4.
We adopted a cosine decay schedule with a warm-up for 5
epochs and used the AdamW [41] optimizer with a weight
decay of 0.05. The resolution of input images is resized to
192 x 192 in the pre-training phase.

In the second stage, we utilized a vision-text contrastive
learning pre-training method to train MambaXray-VL, en-
abling alignment to the text feature space. Specifically, we
used a dataset of 480,000 image-text pairs, composed of
publicly available datasets from MIMIC-CXR [32], CheX-
pert Plus [7], and IU-Xray [17]. Inspired by ARM [51], we
used a unidirectional scanning approach in the first stage
that fits the autoregressive generation to achieve more effi-
cient pre-training. In the second stage, we extend the scan-
ning block to four copies in order to improve the perfor-
mance of the model. During this stage, we chose to pre-
training for 50 epochs, with a batch size set to 192. The
visual encoder was Vim [85], loaded with weights from
the first stage of pre-training, while the text encoder was
Bio_Clinical BERT [1], both encoders were set to be train-
able. We employed the same optimizer as in the first stage,
but the input image size was changed to 224 x 224.

4. Experiment
4.1. Comparison on Public Benchmark Datasets

e Results on IU X-ray Dataset. As shown in Table 1,
it can be seen that both our MambaXray-VL-Base and
MambaXray-VL-Large exhibit excellent performance on
the IU X-ray dataset. Among them, the MambaXray-VL-
Large model is at the SOTA level on BLEU-2, BLEU-3,
and BLEU-4 metrics with scores of 0.330, 0.241, and 0.185,
respectively. This result indicates the superiority of our
method over other report generation methods. However,
on some other metrics such as BLEU-1, ROUGE-L, ME-
TEOR, and CIDEr, our method does not achieve optimal
performance. This reflects the need to improve the general-
ization of our method on other datasets.

e Results on MIMIC-CXR Dataset. As shown in Table
1, our method also demonstrates outstanding performance
on the MIMIC-CXR dataset, surpasses all other advanced
report generation methods, and achieves the most advanced
level in several common indicators (e.g., BLEU-1, BLEU-
2, BLEU-3, and BLEU-4). Specifically, our method im-
proves the BLEU-4 metric by 6% compared to R2GenGPT.
Encouragingly, we achieved favorable results for two of
the three remaining metrics, ROUGE-L and METEOR, fur-
ther demonstrating the superior performance of our model.
Moreover, compared to other vision-language pretraining
models like PTUnifier [13] and PhenotypeCLIP [61], our
method also leads in all metrics, especially in BLEU-4.
This further highlights the robustness and superiority of our
model.

4.2. Clinical Efficacy Metrics

Clinical Efficacy (CE) metrics have significant practical
value, as they can assess report quality to ensure usability
and reliability in real medical scenarios, thereby improving
the quality of healthcare services and patient safety. Ac-
cording to R2Gen [9], unless otherwise specified, this study
adopts macro-average for CE metrics. As shown in Ta-
ble 2, our model also reports CE metrics on the Mimic-
CXR dataset. Our model surpasses all existing methods
in terms of Recall and F1 score, and achieves commend-
able performance in Precision, only slightly trailing behind
HERGen [58]. Overall, our model demonstrates strong per-
formance in CE metrics, reflecting its robustness and effi-
ciency.

We provide results calculated using both macro-average
and micro-average based on 14 key categories. Macro-
average scores tend to be lower because they treat all cat-
egories equally, assigning the same weight to both high-
frequency and low-frequency classes. In contrast, some
prior studies, such as the RGRG [54] and DCL [33], have
reported CE metrics using micro-average.

Notably, if we adopt the same micro-average approach,
as shown in Table 2, our model achieves a precision of
0.561, arecall of 0.460, and an F1-score of 0.505. These re-
sults are competitive with state-of-the-art methods and even
outperform them in certain aspects.

4.3. Visualization

As shown in Fig. 1, we give some examples to illustrate
the effectiveness of our proposed MambaXray-VL model
for the X-ray image based report generation. For specific X-
ray images, we compared ground truth with the report gen-
erated by the MambaXray-VL model and the report gener-
ated by the R2GenGPT model. The X-ray images we chose
contain both front and side views, normal images, and im-
ages containing lesion areas, enabling a more comprehen-
sive and rational visualization. For a more intuitive visual-



Table 1. Comparison of our model’s performance on the IU X-ray and MIMIC-CXR datasets. The symbol { indicates that we follow the
R2Gen annotation using Findings and evaluate with our method, as their report modifies the ground truth to an Impression concatenated
with Findings. The best result is highlighted in bold, and the second-best result is underlined. This symbol % indicates that the algorithm is

a visual language pre-trained model like ours.

Dataset Methods Publication BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr
R2Gen [9] EMNLP 2020 0.470 0.304 0.219 0.165 0.371 0.187 -
R2GenCMN [10] ACL-IJCNLP 2021 0.475 0.309 0.222 0.170 0.375 0.191 -
PPKED [39] CVPR 2021 0.483 0.315 0.224 0.168 0.376 0.187 0.351
AlignTrans [80] MICCAI 2021 0.484 0.313 0.225 0.173 0.379 0.204 -
CMCL [38] ACL 2021 0.473 0.305 0.217 0.162 0.378 0.186 -
Clinical-BERT [75] AAAI 2022 0.495 0.330 0.231 0.170 0.376 0.209 0.432
IU X-Ray METransformer [67] CVPR 2023 0.483 0.322 0.228 0.172 0.380 0.192 0.435
DCL [33] CVPR 2023 - - - 0.163 0.383 0.193 0.586
R2GenGPTT [68] Meta Radiology 2023 0.465 0.299 0.214 0.161 0.376 0.219 0.542
PromptMRG [31] AAAI 2024 0.401 - - 0.098 0.160 0.281 -
BootstrappingLLM [37] AAAI 2024 0.499 0.323 0.238 0.184 0.390 0.208 -
MambaXray-VL-Base Ours 0.479 0.322 0.236 0.179 0.388 0.215 0.508
MambaXray-VL-Large Ours 0.491 0.330 0.241 0.185 0.371 0.216 0.524
R2Gen [9] EMNLP 2020 0.353 0.218 0.145 0.103 0.277 0.142 -
R2GenCMN [10] ACL-IJCNLP 2021 0.353 0.218 0.148 0.106 0.278 0.142 -
PPKED [39] CVPR 2021 0.360 0.224 0.149 0.106 0.284 0.149 0.237
AlignTrans [80] MICCAI 2021 0.378 0.235 0.156 0.112 0.283 0.158 -
CMCL [38] ACL 2021 0.344 0.217 0.140 0.097 0.281 0.133 -
Clinical-BERT [75] AAAI 2022 0.383 0.230 0.151 0.106 0.275 0.144 0.151
MIMIC-CXR | METransformer [67] CVPR 2023 0.386 0.250 0.169 0.124 0.291 0.152 0.362
DCL [33] CVPR 2023 - - - 0.109 0.284 0.150 0.281
R2GenGPTT [68] Meta Radiology 2023 0.408 0.256 0.174 0.125 0.285 0.167 0.244
PromptMRG [31] AAAI 2024 0.398 - - 0.112 0.268 0.157 -
BootstrappingLLM [37] AAAI 2024 0.402 0.262 0.180 0.128 0.291 0.175 -
PTUnifer* [13] ICCV 2023 - - - 0.107 - - 0.210
PhenotypeCLIP* [61] ACL 2023 - - - 0.119 0.286 0.158 0.259
MambaXray-VL-Base Ours 0.420 0.264 0.180 0.129 0.283 0.162 0.206
MambaXray-VL-Large Ours 0.422 0.268 0.184 0.133 0.289 0.167 0.241

Table 2. Comparing the Clinical Efficacy (CE) metrics of different
models on the Mimic-CXR dataset.

Method Publication Average | Precision Recall F1

R2Gen [9] EMNLP 2020 | Macro 0.333 0.273  0.276
METransformer [67] CVPR 2023 Unclear 0.364 0.309 0311
KiUT [29] CVPR 2023 Unclear 0.371 0.318  0.321
MedRAT [24] ECCV 2024 Unclear 0.285 0.265  0.227
CXR-IRGen [52] WACV 2024 Unclear - - 0.293
HERGen [58] ECCV 2024 Unclear 0.415 0.301  0.317
MambaXray-VL-L Ours Macro 0.371 0.321  0.340
DCL [33] CVPR 2023 Micro 0.471 0352 0.373
RGRG [54] CVPR 2023 Micro 0.524 0.474  0.498
MambaXray-VL-L Ours Micro 0.561 0.460  0.505

ization, we have highlighted the parts that match the ground
truth. The yellow highlighted area is the part of the report
generated by our model that matches the ground truth, and
the blue highlighted area is the part of the report generated
by the R2GenGPT model that matches the ground truth.
The pink highlighted area is the portion of the report gen-
erated by both our model and the R2GenGPT model that
matches the ground truth. It is clear that the report gener-
ated by our model is closer to the real report than the report
generated by the R2GenGPT model, which indicates that
our model is effective.

As shown in Fig. 2, to present the experimental results
more intuitively, we visualized the Clinical Efficacy (CE)
metrics of all mainstream algorithms on the CheXpert Plus
dataset using bar charts. The bar charts clearly show that
our proposed model, MambaXray-VL-L, achieved the best
results in all three metrics: Precision, Recall, and F1.

e Does VLMs Pre-trained using Natural Image-Text
Samples Ready for the X-ray Report Generation? In this
paper, we also conduct supervised fine-tuning on the CheX-
pert Plus dataset using Vision-Language Models (VLMs),
including InternVL-2 [14] and MiniCPM V2.5 [79]. We
replace R2Gen-GPT’s vision and language backbone with
VLMs to adapt them for X-ray image-based report genera-
tion. As illustrated in Table 3, we can find that the perfor-
mance of the two models is not as good as the compared
models. These experiments demonstrate a large gap be-
tween pre-training on the natural and X-ray images. In our
future works, we consider further adapting the pre-trained
VLMs using natural images to the X-ray image domain to
achieve a better performance.
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Pa and lateral views of the chest provided. Midline ster-
notomy wires and mediastinal clips are again noted. The
previously noted port-a-cath has been removed. The
lungs are clear bilaterally without focal consolidation ef-
fusion or pneumothorax. Cardiomediastinal silhouette is
stable. Bony structures are intact. No free air below the
right hemidiaphragm is seen.

Pa and lateral views of the chest provided. There is no fo-
cal consolidation effusion or pneumothorax. The cardio-
mediastinal silhouette is normal. Imaged osseous struc-
tures are intact. No free air below the right hemidi-
aphragm is seen. Elevation of the right hemidiaphragm
is unchanged from chest radiograph.

Frontal and lateral views of the chest were obtained.
Dual-lead left-sided pacemaker is again seen with leads
extending to the expected positions of the right atrium
and right ventricle. The lungs are hyperinflated with flat-
tening of the diaphragms suggesting chronic obstructive
pulmonary disease. No pleural effusion or pneumothorax
is seen. Slight increased opacity at the right lung base
best seen on the fron.

As compared to the previous radiograph there is no rele-
vant change. The monitoring and support devices are con-
stant. Low lung volumes borderline size of the cardiac
silhouette. Mild pulmonary edema. Moderate retrocar-
diac atelectasis.

Ap upright and lateral views of the chest provided. Mid-
line sternotomy wires and mediastinal clips are again
noted. There is no focal consolidation large effusion or
pneumothorax. The cardiomediastinal silhouette is sta-
ble. Bony structures are intact. No free air below the right
hemidiaphragm is seen.

Pa and lateral views of the chest provided. There is no fo-
cal consolidation effusion or pneumothorax. The cardio-
mediastinal silhouette is normal. Imaged osseous struc-
tures are intact. No free air below the right hemidi-
aphragm is seen. Clips are noted in the right upper quad-
rant of the abdomen.

Frontal and lateral views of the chest were obtained.
Dual-lead left-sided pacemaker is again seen with leads
extending to the expected positions of the right atrium
and right ventricle. There is no evidence of pneumothorax
or pleural effusion. The lungs are hyperinflated with flat-
tening of the diaphragms consistent with chronic obstruc-
tive pulmonary disease. Cardiomediastinal silhouette is
stable. Bony structures are intact.

As compared to the previous radiograph there is no rele-
vant change. The monitoring and support devices are in
unchanged position. Low lung volumes with minimal at-
electasis at both lung bases. No larger pleural effusions or
pneumothorax. Borderline size of the cardiac silhouette.
No pulmonary edema. No other parenchymal abnormali-
ties.

Frontal and lateral views of the chest were obtained. The
patient is status post median sternotomy and cabg. The
cardiac and mediastinal SilliGUSHESIATGISE@BIE! There is
no FOGHIGOMSONGAN plcural

Mild pulmonary vascular congestion is noted. Degenera-
tive changes are seen in the thoracic spine.

Surgical clips in the right upper quad-
rant suggest prior cholecystectomy .

Frontal and lateral chest radiographs demonstrate hyper-
consis-

expanded lungs with
tent with EHFOMEIDSICHYE PUNONAASEASe] There s
[i§ focal consolidation plEUFAlSHUSION Of pheUMOHoraxy
The cardiac mediastinal and hilar contours are unremark-
able. A left-sided pacemaker device is noted with leads
terminating in the right atrium and right ventricle.

In comparison with the study of

remain in place. Continued enlargement of
the cardiac silhouette with pulmonary vascular conges-
tion and bilateral pleural effusions with compressive at-
electasis at the bases. acute focal Pilgus
[iGHi@ or pneumothorax. Central catheters remain in
place.

Figure 1. X-ray images and their corresponding ground-truths, along with the output of our model and R2GenGPT model generation
reports on the MIMIC-CXR dataset. Matching sentences in our report are highlighted in yellow, R2GenGPT matching sentences are
highlighted in cyan, and sentences matching by both models are highlighted in pink.
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Figure 2. A bar chart visualizing the Clinical Efficacy (CE) metrics of all mainstream algorithms on the CheXpert Plus dataset. ,
, and represent the Precision, Recall, and F1 metrics in CE, respectively.

4.4. Limitation Analysis friendly, and the LLMs with more parameters are not dis-
cussed due to the limited computational resources. On the
other hand, there are still many Vision-Language Models
(VLMs) developed for natural images that are not bench-
marked, due to the limited performance of the X-ray image-

based medical report generation.

This paper provides a comprehensive benchmark for the
X-ray image based medical report generation, which covers
the mainstream MRG models and LLMs. The LLMs eval-
uated in this work focus on 7B and 13B which is hardware



Table 3. Experimental Results of Medical Report Generation on the CheXpert Plus Dataset using different LLMs and VLMs based on
R2Gen-GPT. The symbol { indicates that the model is a VLM. The Param listed in this table denotes the parameters of LLM/VLM.

Index | LLM/VLM Year B4 R-L M C P R F1 Time (min) | Param | Code
#01 Vicuna-V1.5 [83] 2023 | 0.104 0.272 0.160 0.202 | 0.334 0.258 0.276 72.00 6.7B URL
#02 Qwen-1.5[20] 2024 | 0.098 0.262 0.139 0.139 | 0.303 0.233 0.241 154.25 7.7B URL
#03 Qwen-2 [20] 2024 | 0.100 0.270 0.142 0.159 | 0.313 0.269 0.261 103.33 7.6B URL
#04 InternLM [6] 2024 | 0.063 0.207 0.136 0.104 | 0.307 0.274 0.284 294.00 7.3B URL
#05 Llama-2 [55] 2023 | 0.102 0.267 0.157 0.179 | 0.315 0.244 0.260 77.78 6.7B URL
#06 Llama-2 [55] 2023 | 0.101 0.269 0.160 0.214 | 0.321 0.254 0.267 116.42 13.0B URL
#07 Llama-3 [18] 2024 | 0.077 0.220 0.121 0.134 | 0.306 0.232 0.222 130.00 8.0B URL
#08 Llama-3.1 [18] 2024 | 0.075 0.221 0.121 0.136 | 0.295 0.251 0.242 110.00 8.0B URL
#09 GPT2-Medium [50] 2019 | 0.063 0.198 0.104 0.067 | 0.358 0.186 0.165 57.33 354M URL
#10 Orca-2 [42] 2023 | 0.103 0.270 0.161 0.199 | 0.330 0.251 0.271 177.33 6.7B URL
#11 Orca-2 [42] 2023 | 0.100 0.266 0.159 0.187 | 0.317 0.242 0.257 108.66 13.0B URL
#12 Deepseek-LLM [4] 2024 | 0.096 0.268 0.137 0.150 | 0.336 0.256 0.253 201.30 6.9B URL
#13 Yi-1.5 [82] 2024 | 0.091 0.263 0.131 0.136 | 0.322 0.229 0.226 43.66 6.1B URL
#14 Yi-1.5 [82] 2024 | 0.096 0.269 0.138 0.155 | 0.336 0.241 0.243 48.50 8.8B URL
#15 InternVL-27 [14] 2023 | 0.058 0.188 0.112 0.085 | 0.196 0.127 0.132 108.50 8.0B URL
#16 MiniCPM-V2.5T [79] | 2024 | 0.046 0.177 0.085 0.076 | 0254 0.152 0.122 51.50 8.4B URL

5. Discussion

e We have attempted to replicate the mainstream al-
gorithms on the CheXpert Plus dataset. In this pa-
per, we initially attempted to replicate the accuracy of
42 mainstream algorithms on the CheXpert Plus dataset.
However, we successfully replicated only 19 algorithms
in their entirety. The remaining 23 algorithms could not
be replicated successfully due to various reasons. For
instance, COMG [22] requires additional configuration
files, DeltaNet [70] employs its own method for splitting
the training and test sets, leading to unfair results, and
CoFE [34] has not yet released its complete code. Table
4 shows the mainstream algorithms we specifically tried to
replicate.

o Why choose Mamba as the backbone? Firstly, we fully
acknowledge the computational efficiency of CNNs. How-
ever, our experiments and literature review indicate that
while CNNs are computationally lightweight, they often
fall short in performance compared to Transformer-based
models on complex tasks. Transformers are renowned for
their superior performance, particularly due to their ability
to capture global context, although this comes at the cost
of high computational complexity (O(N2)). Mamba strikes
an effective balance between these two extremes. With a
reduced computational complexity (O(N)) and the ability
to retain a global receptive field, Mamba is well-suited for
tasks like report generation that benefit from a global con-
text.

Secondly, while the input resolution in our experiments
is 192192, the original resolution of X-ray images is of-
ten very high, such as 3000x3000. Such high-resolution
images generate a large number of input sequences dur-
ing feature extraction. Efficiently handling these long se-

quences poses a significant challenge for traditional Trans-
former models due to their computational demands. In con-
trast, Mamba, with its optimized state-space model design,
can process these sequences more efficiently.

Finally, although the current Mamba model demon-
strates excellent performance in our experiments, we be-
lieve there is significant untapped potential in its application
to medical image analysis. Further research into optimiz-
ing Mamba-based X-ray visual encoders can not only im-
prove the trade-off between accuracy and efficiency for re-
port generation but also provide valuable insights for other
medical imaging tasks.

e From a theoretical perspective, why does ARG per-
form better than MAE? In the theoretical analysis, ARG
is suitable for tasks that require progressively generating
high-quality images, as it can capture fine-grained details
of the image. However, it is computationally inefficient
and training is complex. MAE [23] offers high training
efficiency and is well-suited for handling large-scale data.
[3, 5, 48, 76] points out that chest X-ray images have high
contrast, rich details, and high similarity, with abnormal le-
sions typically occupying only a small portion of the im-
age. The surrounding details of these areas also require
special attention. ARG, through its step-by-step generation
approach, can precisely capture the image details, making
it particularly suitable for handling complex image struc-
tures like X-rays. Since each generation step depends on the
previous one, it generally ensures high quality and consis-
tency. When combined with Mamba’s efficient computation
capabilities, integrating ARG, chest X-rays, and Mamba
can theoretically yield excellent results. On the other hand,
MAE, which relies on large-scale masking and reconstruc-
tion, may struggle to effectively focus on the detailed ab-



Table 4. The mainstream algorithms we have attempted. ' indicates successful replication on the CheXpert Plus dataset, while Xindicates

unsuccessful replication.

Index | Algorithm Publish Encoder Decoder Success
#01 R2GenRL [49] ACL 2022 Transformer Transformer v
#02 XProNet [59] ECCV 2022 Transformer Transformer v
#03 MSAT [66] MICCAI 2022 ViT-B/16 Transformer v
#04 DeltaNet [70] ICCL 2022 CNN LSTM X
#05 RECAP [26] EMNLP 2023 ViT Transformer X
#06 RGRG [54] CVPR 2023 ResNet-50 GPT-2 X
#07 ORGen [27] ACL 2023 CNN Transformer v
#08 M2KT [77] MIA 2021 CNN Transformer v
#09 Delbrouck et al. [16] EMNLP 2022 CNN Bert X
#10 DCL [33] CVPR 2023 ViT Transformer X
#11 TIMER [71] CHIL 2023 Transformer Transformer v
#12 CvT2DistilGPT?2 [44] AIM 2023 Transformer GPT-2 v
#13 R2Gen [9] EMNLP 2020 Transformer Transformer v
#14 CheXbert [53] EMNLP 2020 Bert Bert X
#15 R2GenCMN [10] ACL 2021 Transformer Transformer v
#16 Zhu et al. [86] MICCAI 2023 Transformer Transformer v
#17 COMG [22] WACYV 2024 ResNet Transformer X
#18 CAMANEet [60] IEEE JBH 2023 Swin-Former Transformer v
#19 ASGMD [73] ESWA 2024 ResNet-101 Transformer Transformer v
#20 HERGen [58] ECCV 2024 CvT GPT-2 X
#21 CoFE [34] ECCV 2024 ViT-S+PubMedBERT GPT-2 X
#22 Token-Mixer [78] IEEE TMI 2023 ResNet-50 Transformer v
#23 CXR-IRGen [52] WACYV 2024 CNN+ViIT Transformer X
#24 EKAGen [5] CVPR 2024 ResNet+ViT Transformer X
#25 PromptMRG [31] AAAI 2024 ResNet-101 Bert v
#26 R2GenGPT [68] Meta Radiology 2023 | Swin-Transformer Llama2-7B v
#27 R2-LLM [36] AAAI 2024 ViT Vicuna X
#28 WCL [74] EMNLP 2021 Transformer Transformer v
#29 RATCHET [25] MICCAI 2021 DenseNet-121 Transformer X
#30 IFCC [43] ACL 2021 M2Trans Transformer X
#31 CXRMate-RRG24 [46] | arXiv 2024 UniFormer Llama X
#32 ARL [12] ACMMM 2022 CLIP-ViT-B+RoBERTa-base | Transformer X
#33 M3AE [11] MICCAI 2022 CLIP-ViT-B+RoBERTa-base | Transformer X
#34 MedKLIP [69] ICCV 2023 ResNet-50+Clinical BERT Transformer X
#35 MedicalMAE [72] WACYV 2023 ViT-S Transformer X
#36 MRM [84] ICLR 2023 ViT Transformer X
#37 CXR-CLIP [81] MICCAI 2023 ResNet-50 None X
#38 PTUnifier [13] ICCV 2023 CLIP-ViT-B+RoBERTa-base | Transformer X
#39 CXRMate [45] arXiv 2024 Transformer Transformer X
#40 VLCI [8] arXiv 2024 Transformer Transformer v
#41 R2GenCSR [63] arXiv 2024 VMamba Llama2-7B v
#42 Wang et al. [64] arXiv 2024 ViT Llama2-7B v
#43 MambaXray-VL-B Ours MambaXray-VL Llama2-7B v
#44 MambaXray-VL-L Ours MambaXray-VL Llama2-7B v




normal lesion areas in X-ray images, leading to compatibil-
ity issues in downstream tasks, especially in medical report
generation.

Based on [19], under the same pretraining settings, ARG

models with autoregressive objectives outperform MAE
models with masking objectives in terms of frozen back-
bone performance on ImageNet-1k. Ren et al. [51] also dis-
covered that by combining ARG and Mamba, they could
compensate for each other’s shortcomings and achieve
state-of-the-art performance on ImageNet-1k.
e Explain why multi-stage training is chosen. What
are the advantages of multi-stage training compared to
joint training? Models trained with multi-stage training
perform better than those with joint training, and we use
different datasets at each stage. Multi-stage training al-
lows us to use more data. Specifically, at first, through the
self-supervised autoregressive generation stage, the model
can focus on extracting effective features from X-ray im-
ages and learning the basic structure of the images. In
the contrastive learning stage, the model can further align
the feature spaces of images and text, thereby improving
the matching relationship between images and text. This
phased training approach avoids the risk of conflicting ob-
jectives that might occur in joint training.

Second, multi-stage training can gradually optimize the
model, enhancing the quality of image understanding and
text generation. Compared to joint training, which simulta-
neously optimizes all objectives from the beginning, phased
training allows for an initial focus on image encoding, fol-
lowed by optimization of text generation and image-text
alignment in later stages. This helps the model learn and
generalize more effectively, improving training efficiency
and stability.

Third, considering that different datasets are used in the
three stages, in the first stage, ARG uses only X-ray im-
ages without corresponding reports, resulting in a dataset
of over one million images. In the second stage, image-
text contrastive learning requires image-report pairs, which
are more limited in quantity. Since precise image-text align-
ment is not crucial in this stage, we use the Impressions sec-
tion from the CheXpert-plus dataset, which is more abun-
dant but less accurate than the Findings section, resulting
in a dataset of around 500,000 pairs. In the third stage,
downstream task fine-tuning involves refining the model on
each specific dataset, using the most accurate parts of each
dataset. If joint training were used, the available data would
be very limited, making it difficult to fully utilize the poten-
tial of LLMs. Therefore, we chose multi-stage training.

As shown in Table 5, Base represents the base model
trained without using the image-text contrastive learning
strategy; Joint represents the model trained by combin-
ing image-text contrastive learning and supervised fine-
tuning in a single stage; Multi-Stage represents the model

trained using a multi-stage approach. It can be observed
that the model trained with joint training performs signif-
icantly worse than the model trained with the multi-stage
approach on all accuracy metrics, and even performs worse
than the model without using the image-text contrastive
learning strategy. We speculate that this is likely due to
the conflicting objectives in joint training, leading to a de-
cline in performance. This also empirically validates the
effectiveness and robustness of our multi-stage training ap-
proach.

o Details about the truncation operation. When repli-
cating different mainstream algorithms, the lack of a uni-
fied standard has led researchers to adopt varying levels of
truncation for ground-truth reports. This discrepancy makes
it challenging to fairly compare the performance of differ-
ent algorithms. Therefore, we made every effort to apply a
consistent no-truncation strategy across all algorithms, en-
suring that the resulting accuracy is meaningful. Specifi-
cally, we modified the code of all mainstream algorithms so
that the models output their predicted reports on the test set.
We then directly compared these predicted reports with the
complete ground-truth reports to calculate accuracy. This
approach maximizes fairness in comparing different algo-
rithms.

e Other details. we outline the steps we took to ad-
dress reproducibility and ensure fairness in benchmarking:
Model Reproduction on MIMIC-CXR: Our first step was
to identify representative open-source works from recent
years and attempt to reproduce their results on the MIMIC-
CXR dataset. Since the CheXpert Plus dataset shares many
similarities with MIMIC-CXR in terms of structure and task
objectives, we hypothesized that any model successfully re-
produced on MIMIC-CXR could also be effectively fine-
tuned and evaluated on CheXpert Plus. Dataset Prepara-
tion for CheXpert Plus: To facilitate this process, we pre-
processed the CheXpert Plus dataset to match the format of
the MIMIC-CXR dataset, especially the configuration files.
Specifically, the dataset was structured as follows:

{

"train’: [{’id’: ..., ’'image_path’: ..., '
report’: ..., ...}, ...1,

'val’: [{'id’: ..., "image_path’: ..., '
report’: ..., ...}, ...1,

"test’: [{’id’': ..., "image_path’: ..., '
report’: ..., ...}, ...]

Fine-Tuning and Benchmarking on CheXpert
Plus. Once the models were successfully reproduced on
MIMIC-CXR, we fine-tuned and evaluated them on the
CheXpert Plus dataset. The following measures were taken
to ensure fairness and reproducibility: Dataset Splits: We
used identical data splits for all models to maintain consis-
tency across experiments. Hyperparameter Settings: While
keeping most hyperparameters at their default values, we




Table 5. Comparing the performance of multi-stage training strategy and joint training on the Mimic-CXR dataset.

Strategy NLG Metrics _ CE Metrics
BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L. Meteor CIDEr | Precision Recall F1
Base 0.416 0.262 0.180 0.130 0.286 0.162 0.224 0.329 0.243  0.255
Joint 0.419 0.262 0.178 0.128 0.281 0.161 0.212 0.330 0.231  0.251
Multi-Stage 0.422 0.268 0.184 0.133 0.289 0.167 0.241 0.371 0.321  0.340

adjusted the batch size to maximize GPU memory usage on
a single A800 GPU. Correspondingly, the learning rate was
scaled to align with the new batch size. Testing Process:
To ensure fair comparisons, we modified the evaluation
code of certain models to output the generated reports
during testing. These reports were then re-evaluated using
a unified methodology for computing Natural Language
Generation (NLG) metrics, eliminating inconsistencies
caused by differing ground truth preprocessing methods.
These steps were implemented to address the challenges of
reproducibility and fairness in evaluating multiple models
on a unified dataset. We hope these clarifications provide a
comprehensive understanding of our efforts.
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