
Can’t Slow Me Down: Learning Robust and Hardware-Adaptive Object
Detectors against Latency Attacks for Edge Devices

Supplementary Material

A. More examples of NMS and Latency At-
tacks

During the training phase, object detectors such as
YOLO [24, 33] and Faster-RCNN [26] usually apply a
many-to-one matching strategy, that the prediction results
contain multiple detection boxes for the same object with
redundancy. The NMS module removes this redundancy by
reducing the number of detection boxes to balance the pre-
cision and recall. As shown in Fig. 9, the model predicts a
number of boxes to detect the object of cat. The box num-
ber is related to the hyperparameters such as the number of
anchors. The initial confidence filtering removes the most
irrelevant background bounding boxes.

The primary goal of latency attacks is to ensure that the
confidence scores of most bounding boxes exceed the con-
fidence threshold. Unlike another type of attack that solely
targets model efficiency [4, 10], latency attacks on object
detectors not only reduces the processing speed, but also
the detection accuracy. Therefore, its defense carries greater
practical value.

B. When DETR meets Latency Attacks

DETR (Detection Transformer) utilizes the Hungarian algo-
rithm for one-to-one matching between predicted boxes and
ground truth boxes, enforcing a strict limit on the number
of detection boxes (e.g., 100 boxes) [2]. Intuitively, DETR
should be agnostic to the number of objects. In terms of ro-
bustness to perturbations, the previous works also suggest
that transformers such as ViT exhibit much higher robust-
ness against gradient-based PGD attacks compared to CNN
models [1].

These have collectively led to the following question:
whether the DETR families have the similar latency attack
surface as the CNN-based object detectors? To answer this
question, we analyze the performance variations with the
number of instances ranging from [0, 100]. We also investi-
gate the latest advance from RT-DETR (Real-Time Detec-
tion Transformer) [46] under the pressure of latency attacks.

We select images with a single instance from three cate-
gories as the candidates, placing each image into an N ×N
grid to generate images with N2 instances. We employ
DETR and RT-DETR to perform inference on these im-
ages 100 times and examine the average execution time on
Nvidia 4070Ti Super and Jetson Orin NX in Fig 10.

The preliminary experimental results show that execu-
tion time does not vary significantly with different number

of instances. From an architectural design perspective, the
stability is because DETR predicts all objects from end-to-
end without an additional hand-craft NMS module for re-
dundant box elimination. Therefore, it is tempting to con-
clude that, as long as the matching threshold/number of
boxes has been set under the hardware capacity, DETRs do
not expose the same vulnerability to latency attacks as their
CNN counterparts.

C. More Details of Experimental Settings

We perform all the AT on a workstation equipped with 8
Nvidia RTX 4090 GPUs, Intel Xeon Gold 6326 CPUs and
480 GB of RAM. The Python environment used for train-
ing and validation is configured with Python 3.9, PyTorch
2.0.0, Torchvision 0.15.0, and CUDA version 11.7. The
edge device utilized Python 3.8, PyTorch 2.0.0, Torchvision
0.15.0, and CUDA version 11.4. The AT implementation
for YOLOv3 and YOLOv5 uses the Ultralytics-YOLOv5
interface [33], while YOLOv8 adopts the Ultralytics inter-
face [34]. Hyperparameter selection are described in the
main text of the paper, and the experiments are repeated for
5 times.

D. Analysis of Training Process

As described before, the AT process initiates from the pre-
trained model available via the Ultralytics Github site1. We
observe the training and validation losses of Lbox,Lobj,Lcls
with the mAP50/95 in Fig.11. We can see that the loss of the
proposed Underload is less than the other two AT methods
of MTD [43] and OOD [13] on Lbox,Lcls except Lobj be-
cause Underload employs objectness loss as an adversarial
proxy. Injecting adversarial perturbations in the inner opti-
mization against the objectness loss makes the outer mini-
mization more difficult to learn with a larger training loss
(but it is below the OOD loss). In the last two columns,
the mean average precision of Underload is much higher
than both of MTD and OOD from the beginning. The Preci-
sion/Recall curves in Fig. 12 reveal that the AT methods do
not impact any specific category. However, because Under-
load considers the trade-off between clean and robust accu-
racy, the accuracy drop is mild and even negligible for some
categories (e.g., the accuracy for the bicycle category only
drops 0.001, compared to the drop of 0.082 and 0.095 for
MTD and OOD).

1https://github.com/ultralytics/yolov5



Original image Detection resultAll prediction boxes confidence filtering IoU filtering

Figure 9. Visualization of the entire NMS process: a) original image; 2) pre-processed results with all the prediction boxes; 3) box filtering
with confidence threshold; 4) additional filtering with IoU threshold; 5) Final detection result.

0 20 40 60 80 100
Number of instances

15

20

25

30

35

40

In
fe

re
nc

e 
Ti

m
e 

(m
s)

apple
dog
person

(a) DETR inference on 4070ts

0 20 40 60 80 100
Number of instances

15

20

25

30

35

40

In
fe

re
nc

e 
Ti

m
e 

(m
s)

apple
dog
person

(b) RT-DETR inference on 4070ts

0 20 40 60 80 100
Number of instances

130

132

134

136

138

140

142

144

In
fe

re
nc

e 
Ti

m
e 

(m
s)

apple
dog
person

(c) DETR inference on Orin NX

0 20 40 60 80 100
Number of instances

146

148

150

152

154

156

158

160

In
fe

re
nc

e 
Ti

m
e 

(m
s)

apple
dog
person

(d) RT-DETR inference on Orin NX

Figure 10. DETR and RT-DETR inference time evaluation on dif-
ferent devices.

E. Hyperparameter Tuning

We provide additional experiments of two key hyperparam-
eters: attack strength, measured by the l2-norm, and bal-
ance between precision/recall, measured by the IoU thresh-
old Ωnms.

E.1. Attack Strength

To assess attack strength, we select the maximum l2-norm
in latency attack [3, 28, 35] for Underload to ensure that our
defense remains effective under challenging conditions. As
shown in Table 2, the l2-norm is set between [10, 70]. We
find that at lower strengths when l2-norm equals to 10 and
20, latency attacks have minimal impact on the accuracy
of both standard (unprotected) and robust models (Under-
load AT), since the attack strength is insufficient to push a
background region across the boundary margin to generate

l2-norm Attack Standard MTD OOD Underload*

10
Daedalus 73.0 57.6 55.8 68.7
Phantom 72.1 57.7 55.7 68.7
Overload 71.8 57.7 55.6 68.6

20
Daedalus 70.9 57.5 55.6 68.4
Phantom 70.2 57.4 55.6 68.3
Overload 66.1 57.2 55.5 68.6

30
Daedalus 66.6 57.2 55.3 67.9
Phantom 64.2 57.4 55.8 67.6
Overload 51.2 57.0 55.7 68.4

50
Daedalus 41.1 55.0 53.5 62.0
Phantom 32.9 56.2 54.7 65.4
Overload 17.1 54.0 54.8 59.3

70
Daedalus 12.8 50.1 48.4 50.3
Phantom 7.5 54.7 53.3 61.3
Overload 4.5 49.4 49.1 53.3

Table 2. Variation of the attack strengths in terms of l2-norm for
YOLOv5s. The bold l2-norm is the default parameter used in
the main text. The Best and Second Best values in each row are
marked in Red and Blue.

phantom objects.
However, when l2-norm reaches 30, it starts to affect the

accuracy of the standard model. When the l2-norm exceeds
50, the accuracy of the unprotected model declines sharply
to single digits when l2-norm increases to 70. On the other
hand, we observe that the robust accuracy maintains above
the 60% mAP level for most of the attack strength and is
still above 50% under the maximum l2-norm of 70. In com-
parison to MTD and OOD, our approach achieves an accu-
racy of 0.2% to 10.7% improvements under different attack
strengths.

E.2. Balance between Precision/Recall
The Intersection over Union (IoU) threshold is an impor-
tant parameter that balances the precision and recall in ob-
ject detection. A higher IoU threshold during the NMS pro-
cess retains fewer candidate boxes, which reduces the oc-
currence of false positives and enhances the model’s preci-
sion. However, setting the IoU threshold too high may inad-
vertently remove some true positives, thereby reducing the
recall. Conversely, reducing the IoU threshold can enhance
recall by keeping more candidate boxes, but it also leads to



Figure 11. Visualization of the training process of YOLOv5s on the PASCAL-VOC dataset.

Ωnms Attack Standard MTD OOD Underload*

0.30

Clean 72.7 58.1 57.4 68.8
Daedalus 12.7 50.4 49.5 49.9
Phantom 7.2 54.8 54.7 61.2
Overload 4.1 49.1 50.3 52.6

0.45

Clean 73.6 58.7 57.8 69.5
Daedalus 13.0 50.9 50.0 50.5
Phantom 7.4 55.6 55.1 61.9
Overload 4.3 49.7 50.6 53.4

0.60

Clean 73.3 57.7 55.9 68.9
Daedalus 12.8 50.1 48.4 50.3
Phantom 7.5 54.7 53.3 61.3
Overload 4.5 49.4 49.1 53.3

0.75

Clean 71.4 53.7 50.7 65.7
Daedalus 12.1 46.6 43.7 47.5
Phantom 7.4 51.1 48.5 58.6
Overload 4.4 46.6 45.1 51.3

0.9

Clean 62.5 39.6 35.1 52.7
Daedalus 12.0 33.9 29.5 36.9
Phantom 6.3 37.6 33.7 46.5
Overload 3.7 35.0 31.6 41.1

Table 3. Variations of the IoU threshold Ωnms in YOLOv5s. The
bolded Ωnms is the default parameter used in the main text. The
Best and Second Best values in each row are marked in red and
blue. The first row of “Clean” compares the clean accuracy drop
with different AT methods under different Ωnms.

an increase in overlapping detection, which ultimately de-
creases the precision.

Under latency attacks, the IoU threshold can be adjusted
to simulate various attack scenarios. Setting the IoU thresh-
old to 1.0 keeps all the candidate boxes (no box is removed),
thereby retaining the artifacts produced by the latency at-
tack that emulates the worst-case scenario. We evaluate five
IoU thresholds ranging from 0.3 to 0.9, with an increment
of 0.15, covering a wide range of IoU threshold values. We
observe that both the clean and robust accuracy of the stan-
dard and robust models exhibit an initial increase followed
by a decrease as the IoU threshold increases. Among the
selected IoU thresholds, the highest accuracy occurs at an
IoU threshold of 0.45. At this threshold, the reduction of
Underload in clean accuracy is minimal, with a decrease of
only 4.1%. In most cases, the robust accuracy of the Un-
derload outperforms the other two AT methods. However,
there are a few outliers in the low IoU cases (when the IoU
threshold is 0.3 or 0.45), the robust accuracy of the MTD
exceeds that of the Underload. We conjecture that it is due to
the Daedalus method, which simultaneously optimizes the
confidence and size of the phantom objects, may generate
some high-confidence and large-area phantoms (compared
with other latency attacks). When the IoU threshold is low,
these phantoms can interfere with natural objects, leading
to a reduction in the robust accuracy.

F. Framework and Hardware Optimization
under Latency Attacks

In addition to PyTorch implementation, we also convert
YOLOv5s and YOLOv8s to other implementations includ-
ing ONNX and TensorRT for specialized acceleration. For



Model Device Attack
Standard Underload*

ONNX TensorRT ONNX TensorRT

YOLOv5s

1650Ti Laptop
Clean 19.4 14.1 19.0 14.2

Overload 69.2 64.9 18.7 14.0

4070Ti Super
Clean 7.4 6.3 7.2 6.2

Overload 31.1 28.6 7.0 6.3

Jetson Orin NX
Clean 30.3 19.2 30.1 20.0

Overload 100.8 87.7 29.8 19.9

Jetson Xavier NX
Clean 57.7 30.8 57.6 30.0

Overload 447.2 418.5 56.0 31.0

YOLOv8s

1650Ti Laptop
Clean 23.1 13.8 23.0 14.0

Overload 25.3 16.0 23.1 13.9

4070Ti Super
Clean 8.3 2.9 8.4 3.0

Overload 9.4 4.0 8.3 2.8

Jetson Orin NX
Clean 30.1 18.2 30.0 18.0

Overload 33.2 21.7 30.3 18.1

Jetson Xavier NX
Clean 58.1 42.2 58.0 40.0

Overload 59.8 45.7 57.6 40.3

Table 4. Different frameworks of YOLOv5s and YOLOv8s model inference time (ms) in FP32.

Package Desktop Ver. Edge Device Ver.
CUDA 11.7 11.4

Ultralytics 8.2.100 8.2.100
ONNX 1.14.0 1.17.0

ONNXRuntime 1.16.0 1.16.0
TensorRT 8.6.0 8.5.2

Table 5. ONNX and TensorRT models inference environments.

reproducing purposes, the environment setup is shown in
the Table 5. We employ the same method to attack the im-
plementations of ONNX and TensorRT. In details, we ex-
port ONNX and TensorRT models using the official imple-
mentation, which convert only the backbone without utiliz-
ing the INMSLayer or EfficientNMSPlugin. Other
configurations remain the same as Sec. 5.

From Table 4, we find that latency attacks affect mod-
els across different implementations even for TensorRT. De-
spite of hardware-specific optimizations, the execution time
still increases by 1.1 − 13.5× under the Overload at-
tack. In TensorRT, EfficientNMSPlugin is also vul-
nerable because as per to our evaluation, its execution time
increases with the number of candidate boxes. Fortunately,
the AT models exported from our Underload defense is
able to defend against the corresponding latency attacks and
portable to different frameworks and edge devices.



(a) Standard (b) MTD

(c) Underload (d) OOD

Figure 12. Precision/Recall curves for different AT methods.


