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In this supplement, we show additional visual results
on the in-the-wild (Sec. A1.1) and NeRSemble datasets
(Sec. A1.2); provide additional visual ablation studies
(Sec. A2); provide an explanation of the shoulder pose aug-
mentation process including synthetic multi-view data gen-
eration using Next3D [9] (Sec. A3); explain how visibil-
ity and occlusion calculations are performed in our method
(Sec. A4); visualize the outputs and score matrices that we
use to calculate performance metrics (Sec. A5); describe
the cropping and training modifications made to the origi-
nal LP3D (Sec. A6); present three additional sets of quan-
titative results using different crops of the face (Sec. A7);
show how jointly fusing the three planes can cause collapse
to 2D (Sec. A10), and lastly discuss our runtime analysis
(Sec. A8). Please refer to the accompanying video with this
document for better assessment of the quality of the results
of the various methods.

A1. Additional Comparisons
In this section, we show more qualitative comparisons be-
tween LP3D [10], GPAvatar [2], VIVE3D [3], One-Shot-
Avatar [5] and our method in Figs. A1, A2, A3, A4, and A5.
We highly encourage readers to view the supplementary
video, which provides more visual comparisons.

A1.1. In-The-Wild-Data
In Figs. A1, A2, and A3, we show results of GPAvatar,
LP3D and our model on challenging in-the-wild test se-
quences. Since NeRSemble is a high-quality dataset cap-
tured in a controlled studio environment, it is different from
real-life usage and limited in terms of lighting variations,
camera viewpoints, and motion blur. Therefore, we cap-
ture people of different gender and ethnic backgrounds in
daily environments like offices, apartments, and in outdoor
open areas to evaluate the performance of different mod-
els in challenging in-the-wild situations. The dataset in-
cludes 9 video sequences and 1 image set captured from
iPhones, all of which are shown in this supplement. Our
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model is able to capture lighting changes (Figs. A1), main-
tain stable identity (Figs. A3), and remember the user when
their face is partially out of the frame (Figs. A3, second row
from the bottom), whereas LP3D shows temporal inconsis-
tency (Figs. A3, red arrows); GPAvatar is not only unable to
capture the live lighting condition of the user (Figs. A1),
and also fails to reconstruct their expressions accurately
(Fig. A2).

A1.2. Additional Results on NeRSemble
We notice that, despite good numerical performance in
terms of LPIPS and PSNR, a closer visual inspection of
GPAvatar’s results reveals that it is visually not as convinc-
ing as the two metrics indicate: GPAvatar renders dampened
expressions (Fig. A4 top examples) and hallucinates parts of
the face not present in the reference image (the inner mouth
and tongue in Fig. A4 bottom example, third row). LP3D is
able to reconstruct nuanced facial expressions but struggles
to maintain coherent identity when different viewpoints are
used as inputs (see Fig. A4 top example, first row). Our
model achieves both of these properties.

A1.3. VIVE3D & Li et al. [5]
In our main paper and supplement, we mostly omitted re-
sults from Li et al. [5] and VIVE3D [3] because of their less
competitive performance. The authors of Li et al. [5] kindly
performed evaluations for us. Different from other meth-
ods, the results are evaluated only on the input viewpoints
instead of all 8 viewpoints for NeRSemble. In Fig. A5, we
show that this method excels at frontal views but shows sig-
nificant blurriness from the sides as well as unnatural ex-
pressions. On the other hand, VIVE3D is heavily affected
by the input viewpoint. It excels at reconstructing the input
views but fails to reconstruct other viewpoints well. Com-
pared to these two methods, we achieve significantly more
consistent reconstruction across all views.
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Figure A1. In-the-wild Lighting (GPAvatar Vs. Ours): Our method captures dynamic lighting changes in the input video whereas
GPAvatar fails to do so. The output of the models should match the lighting and expression of the input Video Frame (GREEN box).



Figure A2. In-the-wild Expression (GPAvatar Vs. Ours): Our method more accurately captures human expressions in the input video,
whereas GPAvatar fails to reconstruct authentic expressions. Note that the output of the models should match the lighting and expression
of the input Video Frame.

A2. Additional Ablation Studies
A2.1. Comparison to Optical Flow
In Fig. A6, we show a visual comparison of naively using
optical flow, i.e. warping the raw triplane towards canoni-



Figure A3. In-the-wild Viewpoints (LP3D Vs. Ours): Our method is more robust to variations in the input viewpoint, whereas LP3D
often performs poorly on rendering novels views that are far from the input viewpoint. Note that the output of the models should match the
lighting and expression of the input Video Frame.

cal triplane, instead of using our Undistorter. Without our
Undistorter, the result exhibit significant artifacts. The cor-

responding numerical results are in the main paper’s Tab. 3.



Figure A4. Example comparisons on NeRSemble sequences. Our model is able to capture extreme expressions and dynamics in
hair movement (last row) while maintaining consistent identity despite viewpoint changes. On the other hand, LP3D shows inconsistent
identities and GPAvatar exhibits inaccurate expressions and significantly more blurry results. GPAvatar also fails to reconstruct novel
content such as the tongue (second last row) and different hair movement (last row). The quality of expression reconstruction is best
viewed in the accompanying video.
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Figure A5. VIVE3D [3] and Li et al. [5]: “Li et al. [5]” Row: The authors kindly evaluated their method for us on the same driving/input
viewpoint (highlighted in orange) instead of on all 8 viewpoints. This method excels at frontal views but shows significant blurriness
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reconstructions using the same input view as the other methods. We omit detailed results from VIVE3D and Li et al. in the main paper due
to their less competitive performance. Images shown are at the original resolution.



A2.2. Comparison to Without Shoulder Augmenta-
tion

Fig. A6 shows a visual comparison to our method’s variant
that does not use the proposed shoulder augmentation (ex-
plained in detail in Sec. A3. Without the proposed shoulder
augmentation, the model keeps the shoulder fixed and fails
to capture the shrug (top row). This is because the Fuser
then heavily relies on the more accurate frontal reference
for the shoulder region, thus losing the ability to capture
shoulder movements. The corresponding numerical results
are in the main paper’s Tab. 3.

Reference

Input Frame w optical flowLP3D w/o shoulder augOurs

Figure A6. Visual ablation: Our method with optical flow and
w/o shoulder augmentation on two different input frames (top and
bottom rows).

A3. Shoulder Pose Augmentation

As shown in Fig. A7, for training we generate 2 input im-
ages (i.e., a Reference Image and an Input Frame in the
green box), and 2 ground truth images using Next3D (in
the blue box). We use these images to train our triplane fu-
sion module such that it learns to enhance the reconstruction
of the input frame by leveraging a frontal reference frame.
When used in practice, the input frame often contains shoul-
der rotations that are different from that of the reference
frame. It is important to reconstruct varying shoulder poses
in the input video because it conveys nuanced body lan-
guage that is crucial to the perceived realism of an appli-
cation such as telepresence.

We utilize a pretrained 3D GAN, Next3D [9], as our
training data generator. However, Next3D does not allow
us to synthesize different shoulder poses for the same per-
son. Since it is difficult to change the 3D geometry encoded
in triplanes, we synthesize different shoulder poses in the
2D renderings by bending camera rays during volume ren-
dering, i.e., by applying a warping field M to the 3D points
sampled. More formally, we apply the warp fields Mroll

p
and Myaw

p sequentially in order to transform the set of point
samples p used during volume rendering R(·). The final
rendered image, I , thus uses the warped point p′ to sample

the triplane T during volume rendering R(·):

p′ = Myaw
p Mroll

p p, (1)

I = R(p′, T ). (2)

We show an overview of this shoulder augmentation process
at the bottom of Fig. A7.

In Fig. A7(a), we show the original 3D head, the Next3D
triplane (y-axis upwards, x-axis to the right, z out-of-the-
plane), which ranges from -0.5 to 0.5 along all axes, as well
as uniform point samples that represent the 3D space be-
fore being warped. Then, we warp the camera point sam-
ples to achieve shoulder roll (Fig. A7(b)). The warping
transform is only applied to the neck and shoulder regions,
which are highly consistent in terms of position across
Next3D triplanes. This is because 3D GANs like Next3D
and EG3D[1] learn a canonical head space from 2D face
crops of consistent sizes. Therefore, we find that the neck
and shoulder regions can simply be expressed by all point
samples pshoulder = (x, y, z), where y < ychin, where
ychin = 0.2.

We rotate pshoulder around the top of the neck verte-
brae, for which we heuristically use the origin as the ro-
tation pivot. Since a uniform rigid rotation would result in
discontinuities, we apply increasingly larger rotations to the
points based on their y (vertical) coordinates. Therefore,
given a roll rotation angle θbase for the base of the shoulder
at ybase = −0.5, the roll rotation matrix Mp for point p can
be calculated as:

dchin = ∥y − ychin∥, (3)
θp = dchin/∥ybase − ychin∥ × θbase, (4)

Mroll
p =

cos(θp) − sin(θp) 0
sin(θp) cos(θp) 0

0 0 1

 . (5)

Similarly, given the yaw rotation angle ϕbase for the base
of the shoulder, the yaw rotation angle ϕp and matrix Myaw

p
for point p can be calculated as

ϕp = dchin/∥ybase − ychin∥ × ϕbase, (6)

Myaw
p =

 cos(ϕp) 0 − sin(ϕp)
0 1 0

− sin(ϕp) 0 cos(ϕp)

 . (7)

The final rendered image, I , is thus generated by the vol-
ume rendering function R(·) with warped point samples p′

to sample the triplane T using Eqns. (1) and (2).

A4. Visibility Estimation and Occlusion Masks
LP3D generates a complete triplane (and thus a 3D portrait)
from a single image, which inevitably contains occlusion.
For example, when the camera captures the person from the
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Figure A7. Shoulder Augmentation. Our data generator (Next3D [9]) does not allow for control over shoulder poses. To enable our
model to learn to fuse triplanes with different shoulder poses, we perform shoulder pose augmentation during volume rendering.

right, the right side of the face is visible and thus more re-
liable in the reconstruction whereas the left side of the face
is occluded and thus is often inaccurately hallucinated by
LP3D. Therefore, to fuse reliable information from the in-
put frame (i.e. raw triplane Traw) and the reference image
(i.e. canonical triplane Tcano), it is important to inform the
fuser F about the visible (and thus reliable) regions of the
two triplanes.

In Fig. A8, we show how we predict and leverage visi-
bility information by highlighting the data flow of visibility
information through our network in purple. First, our model
estimates a predicted visibility triplane T vis

raw for the raw tri-
plane Traw. Second, the visibility triplane is undistorted
alongside Tundist using Tcorr. Finally, the undistorted visi-
bility triplane T vis

undist informs the Fuser F about the visibil-
ity/reliability of different regions in Tundist and allows for
better fusion.
Visibility Mask Triplane. There are various ways to com-
pute the visibility information for a triplane. For simplicity,
we approximate the actual visibility masks through a ras-
terization approach: given a triplane T and its input cam-
era pose C, we generate a pseudo-groundtruth visibility tri-

plane TvisGT by first rendering the triplane T into a depth
map via volume rendering from camera C. We then lift
the depth map into a 3D point cloud and rasterize the point
cloud back onto the triplane by orthographically projecting
the points onto the xy, yx, and xz-planes. The final visibil-
ity mask is 1 where points are rasterized and 0 where none
are rasterized. Therefore, for a canonical triplane Tcano and
the raw triplane Traw, we can calculate pseudo-groundtruth
visibility triplanes T visGT

cano as well as T visGT
raw .

However, this process is expensive due to the volumetric
rendering used for depth map generation, we thus develop
a Visibility Estimator to directly predict the visibility tri-
planes. Our Visibility Estimator is a 5-layer ConvNet that
predicts visibility maps T vis

cano, T
vis
raw ∈ R3×1×256×256 from

the canonical triplane Tcano and raw triplane Traw, respec-
tively.

The two visibility maps are concatenated with Tcano

and Tundist before being input into the Triplane Fuser F .
In Fig. A8(right), we show an example of the raw tri-
plane Traw and its predicted visibility triplane T vis

raw, undis-
torted triplane Tundist, its visibility triplane T vis

undist, and the
pseudo-groundtruth visibility triplane T visGT

undist .
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Figure A8. Visibility Estimation: We show the flow of visibility information in purple.

Occlusion Mask Triplane. In addition to providing the
Fuser F with helpful information about visibility, it is also
beneficial to emphasize the reconstruction of occluded areas
during training because it encourages the model to lever-
age the frontal reference image for the reconstruction of oc-
cluded areas. To achieve this we use an occlusion mask tri-
plane ToccMask ∈ R3×1×256×256 to upweight the triplane
loss on occluded areas on the triplane indicated by the mask
(see main paper Sec. 4.4). ToccMask is calculated as the
difference between the visibility triplane T visGT

raw of the raw
triplane versus the much more complete visibility triplane
T visGT
cano of the canonical triplane.

The Visibility Estimator is supervised via an L1 loss be-
tween the predicted visibility triplane and its groundtruth
as:

Lvis = L1(T
vis
raw, T

visGT
raw ) + L1(T

vis
cano, T

visGT
cano ). (8)

A5. Visualization of Score Matrix
In Fig. A11, we show example Score Matrices S
for the NeRSemble dataset’s sequence “SEN-10-
port strong smokey”. Each cell Si,j represents the
score of the reconstruction using view i as the input and
view j as the novel view. Our model achieves higher
average and more uniform performance, because it has a
lower standard deviation and hence more uniform color.
Additionally, our model achieves improvements for a

majority of the cells (input-novel view combinations).

A6. Cropping Modifications to LP3D
Our implementation of LP3D mostly follows the original
LP3D [10] with a few modifications. The original LP3D
was trained for tight crops around faces corresponding to
the normalized focal length of 4.26 in EG3D [1]. To capture
the whole head including shoulders, we increased the field
of view and retrained LP3D with a normalized focal length
of 3.12.

In Tab. 3 of the main PDF, we show the comparison on
the original LP3D (Tab. 3 first row) with our implementa-
tion of LP3D (Tab. 3 second row), validating that our im-
plementation produces superior results than the original.

A7. Performance on Face-only Crops
We use LP3D’s face cropping for our model, which includes
the face and the shoulders. GPAvatar by default uses cen-
ter crops (the largest square region at the center of an im-
age) and does not perform face tracking. This could result
in more or less complete reconstructions depending on the
image. Due to face cropping inconsistency between the dif-
ferent methods, their numerical performance can vary based
on the kind of cropping used for evaluation. Our model also
focuses on shoulders in addition to the head, thus we addi-
tionally evaluate the models on different input/output image
crops for fairness.
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“LP3D’s Output Crop” rows (Table. A1): For refer-
ence, these numbers are also copied from the main paper.
Here each of the methods uses its default method to crop
the inputs, but we crop the various methods’ outputs using
LP3D’s cropping.

“LP3D’s Input Crop” rows: These methods use the
same cropped inputs as LP3D instead of applying LP3D’s
cropping to the output.

“Face Crop” rows: These methods use the same
cropped inputs as LP3D, and the rendered images are later
cropped around the face region using the face regions de-
tected by the NVIDIA MAXINE AR SDK [6] as on the
groundtruth images. This cropping provides the most con-
sistent cropping for all methods but also fails to measure
important attributes like shoulder pose and hair.

Since the expression accuracy reported here was calcu-
lated using the NVIDIA MAXINE AR SDK [6] on the face
crop, the number reported here remains the same as in the
main paper and across crops.

Our model is the best in expression and identity accu-
racy among all methods. Despite GPAvatar’s good numeri-
cal performance on the LPIPS and PSNR metrics, its over-
all realism is significantly undermined by its dampened ex-
pression reconstruction, significant blurriness when viewed
from the side, and often inaccurate reconstruction (Fig. A4).
Please refer to the supplementary video for more direct vi-
sual assessment.

A8. Runtime

The total inference time of our un-optimized Pytorch im-
plementation on an NVIDIA RTX 3090 is 225 ms (LP3D:
33.0ms, visibility: 2.1ms, Undistorter: 20.6ms, Fuser:
169.1ms). We believe further optimization of our archi-
tecture, including mixed precision training and deploying
it to a TensorRT [7] inference framework, can significantly
speed up the method, paving the way for more compelling
democratized 3D telepresence.

Crop Method Expr↓ ID↓
Synthesis Quality NVS Quality

PSNR↑ LPIPS↓ PSNR↑ LPIPS↓
Face GPAvatar[2] 0.2041 0.2173 21.94 0.2327 21.94 0.2327
Crop LP3D[10] 0.1676 0.1763 21.50 0.2511 20.78 0.2670

Ours 0.1584 0.1644 22.13 0.2494 21.88 0.2546

LP3D’s GPAvatar[2] 0.2041 0.2026 22.56 0.2294 22.56 0.2294
Input LP3D[10] 0.1676 0.2154 22.33 0.2232 21.52 0.2374

Crop Ours 0.1584 0.1865 22.76 0.2189 22.43 0.2240

LP3D’s GPAvatar[2] 0.2041 0.2074 21.94 0.2334 21.94 0.2334

Output LP3D[10] 0.1676 0.2154 22.33 0.2232 21.52 0.2374

Crop Ours 0.1584 0.1865 22.76 0.2189 22.43 0.2240

Table A1. Comparison on NeRSemble [4] using face crops:
Quantitative performance on the NeRSemble [4] dataset using
different input/output face crops. The bottom “LP3D’s Output
Crop” rows: These numbers are included in the main paper, where
each of the methods uses its default method to crop the input. We
re-crop their outputs using LP3D’s cropping method. When the
desired cropping is larger than a method’s output, black color is
padded to the image. The middle “LP3D’s Input Crop” rows:
The methods use the same cropped inputs as LP3D instead of ap-
plying LP3D’s cropping to their output. The top “Face” rows:
The methods use the same cropped inputs as LP3D, and the ren-
dered images are cropped around the face region using NVIDIA
MAXINE AR SDK’s [6] detection. Our method achieves state-of-
the-art expression and identity reconstruction across all cropping
methods. Please refer to the supplementary video for a better as-
sessment of quality.

A9. Sharpness Improvements

In Tab. 3 in the main paper and Fig. A13, we show sharp-
ness improvements from incorporating GAN loss to Eqn.
10. However, we notice that the resulting reconstructions
are less coherent across time and input viewpoints as in-
dicated by the increase in “IVV(PSNR)” metric in Tab.3
(main paper). We found that when sharpness increases, the
reconstruction would deviate more from the ground truth.
This is somewhat expected due to the nature of GANs,
which focus on generating realistic images indistinguish-
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Figure A10. An Example of Output Matrices of LP3D and Our Method: We show an example output matrix from a frame in a
NeRSemble test sequence. Each row represents the process of creating a 3D head from the input view (left), and evaluating the reconstruc-
tion by rendering all 8 viewpoints. The images in this 2 × 8 × 8 output matrix are 512 × 512 each, leading to a large image. The shown
output matrix is downsampled for visualization. On this sequence, our method improves over LP3D with a large reduction in IVV(PSNR)
from 1.013 down to 0.219, indicating significant improvements in the robustness towards variations in input viewpoint. Moreover, the
Novel View Synthesis Quality (NVS Quality) improves from 18.730dB to 19.460dB in terms of PSNR.

able from real images but do not enforce reconstruction ac-
curacy. One possible solution is to employ GAN loss on
image crops instead of the whole image because the moti-
vation for employing GAN loss in this case is not to gener-
ate entirely new images, but to simply improve sharpness.

Therefore, regional GAN training should suffice. We leave
this for future work.



Figure A11. An Example of Score Matrix: We show example Score Matrices S for the sequence named “SEN-10-port strong smokey”.
Left 2 Columns: Ours’ and LP3D’s score matrices averaged over the test sequence. LPIPS (top row) and ArcFace ID cosine distance
(bottom row) are better when lower (greener/bluer), and PSNR (bottom row) better when higher (greener/redder)). Right Column: the red
color represents an improvement compared to LP3D, and blue represents degradation. Notice that changes in LPIPS and ArcFace ID losses
are negated such that positive numbers (red) reflect positive changes. Our model achieves higher average and more uniform performance
(lower standard deviation, more uniform color) whereas LP3D overfits to the input viewpoint and thus achieves higher performance for
input views, but performs badly on novel views.

A10. Joint vs. Separate Triplane Undistorter
and Fuser

As mentioned in the main paper, our Triplane Undistorter
and Fuser modules both consist of 3 copies of the same
network (with different weights), where each processes one
plane in the triplane. One might expect that jointly fusing
the three planes using one transformer allows for commu-
nication of information between the 3 planes in a triplane
and could thus improve results. However, we find that us-
ing a single transformer leads to collapse to 2D (Fig. A12
(left)). We also experimented with first projecting the fea-
ture planes into the same feature space before fusion, but the
results remain the same. On the other hand, using 3 separate
smaller networks to process the 3 planes separately results
in correct fusion (Fig. A12 (right)). We suspect that this is

because jointly fusing the triplanes is a significantly more
difficult task than fusing each of the planes, separately.

A11. Large Differences Between Reference and
Input Frame

When the facial expression is large, our model accurately
reconstructs the expression in the input frame while main-
taining a coherent identity (Fig.4, rows 1 and 3 in the main
paper). When there are large changes to the hair region
(e.g., the subject wearing headphones in Fig. A13, second
column), the model often relies on the reference frame in-
stead of adapting to the new input frame. This is because
our model is a data-driven approach that learns to adapt
to any change (e.g. expressions, lighting, shoulder poses,
teeth, tongue, wrinkles) as long as the data is present during
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Right: Using Separate Fusers effectively treats each plane in the triplane as a separate entity. Each of the 3 pairs of triplanes are fused
separately and combined into the final fused triplane. This approach leads to correct fusion results.

training. However, the data generator, Next3D, does not al-
low for altering the hair region (e.g. hairstyles, wearables).
Since the hair region for the same person is kept the same
during training the trained model assumes that the hair re-
gion is mostly static. Nonetheless, given its data-driven na-
ture, our model would be able to adapt to these changes
when such data is available during training.

Figure A13. Additional experiments with cross-identity fusion
(first column); large appearance differences between the reference
and input images for single identity (second column); improve-
ments in image quality using a GAN-based loss (third and fourth
column).

A12. Different Identities for Reference Image
and Input Frame

When given reference and input images of different identi-
ties, our model fuses the two images instead of re-enacting

any specific one (Fig. A13, left column). For example, the
fused rendering has the hair style and face shape of the ref-
erence image, but inherits the expression and facial features
of the input image. However, cross-identity reenactment
can be achieved by first performing 2D reenactment and
then lifting the re-enacted image (e.g. using our method),
as shown previously by [8]. Since reenactment is not the
purpose of our paper, we did not show any relevant result.
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