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Appendix

A. Overview
The supplementary material provides more implementation
details, ablation analyses and qualitative results to show
deep insights into our method. Specifically, Appendix B
describes the architecture details of our model and experi-
ment settings. Appendix C provides more ablation studies
on our Uni-AD. To further show the effectiveness of our
model design, we show more qualitative results of Uni-AD
in Appendix D.

B. Implementation Details
B.1. Architecture details
We show the architecture details of our visual mapping
network for MAD-eval-Named benchmark and character-
refinement module in Tab. S1. Note that for CMDAD
and TVAD datasets, we use the training set of CMDAD
to train our character-refinement module and apply In-
ternVideo2.5 [15] to extract video frame features. The
character-refinement performances are shown in Tab. S2.

Table S1. Architecture details of visual mapping network and
character-refinement module in Uni-AD.

Visual mapping network
(GPT-2-B32)

projection layer 512→768
num latent 30
num blocks 2

channel 768
num head 12

ffn dimension 3072

Visual mapping network
(LLaMA-L14)

projection layer 768→4096
num latent 30
num blocks 2

channel 4096
num head 32

ffn dimension 16384

Character-refinement module
(for MAD-eval-Named)

num blocks 3
channel 768

num head 12
ffn dimension 3072

Character-refinement module
(for CMDAD&TVAD)

projection layer 4096→4096
num blocks 1

channel 4096
num head 32

ffn dimension 16384

B.2. Datasets
MAD-Named [2, 12]: The MAD-Named benchmark con-
sists of two parts: MAD-v2-Named for training and MAD-

Table S2. Architecture details of visual mapping network and
character-refinement module in Uni-AD.

Dataset Precision↑ Recall↑
MAD-eval-Named 0.41 0.77

CMDAD 0.26 0.94
TVAD 0.27 0.94

eval-Named for testing. Specifically, MAD-v2-Named
contains 334,296 ADs and 628,613 subtitles collected from
488 movies, while MAD-eval-Named contains 6,520 ADs
and 10,602 subtitles collected from 10 movies. Annotation
includes the start and end time of each AD and the AD
contents without any post-processing on character names.
We notice there are many homophonic name mismatches
in MAD-Named, such as an actor’s name being ’Gray’ in
character information from IMDb but ’Grey’ in the ad an-
notation. We thus processed these mismatched information
to ensure that the same actor’s name remains consistent.
CMDAD [4]: CMDAD is a movie AD dataset that contains
101k ADs for more than 1432 movies, with 100 movies split
for evaluation.
TVAD [16]: TVAD is a recently proposed TV-series AD
dataset, which contains 31k ADs for training and 3k ADs
for evaluation.
AudioVault-AD [2]: AudioVault-AD is a text-only dataset
composed of 3.3 million AD utterances collected from
7,057 movies downloaded from the AudioVault website.
Movies in AudioVault-AD are not included in the MAD
dataset.

B.3. Baselines
In this paper, we compare our Uni-AD with the following
AD generation methods:
ClipCap [7]. The ClipCap model converts the CLIP [11]
feature of visual inputs into embeddings with a mapping
network. Then the output embeddings will be used as prefix
to prompt GPT-2 [10] to generate corresponding captions.
AutoAD-I [2]. AutoAD-I follows ClipCap and concatenate
previous AD descriptions and subtitles in movie with visual
embeddings to prompt the fronzen GPT-2 [10] for AD gen-
eration. This approach further apply partial-data pretrain to
address the issue of insufficient AD data.
AutoAD-II [3]. This method applies a Flamingo-style [1]
architecture for AD generation and introduces an external
Character Bank to enable their model to label characters
appearing in the movie. AutoAD-II also presents an AD
temporal proposal module to determine whether AD should
be inserted in the given pause in dialogue.
AutoAD-III [4]. AutoAD-III follows BLIP2 [5] to use



Q-former architecture to bridge the visual space with the
language space. Then the model can generate textual
outputs with a large language model. AutoAD-III also
proposed a large-scale HowTo-AD dataset for pre-training.
AutoAD-Zero [16]. AutoAD-Zero designs a pipeline
for character recognition with face detection methods and
prompts LLM by circling character faces. A two-stage
training-free method is proposed for AD generation, which
consists of (i) VLM-Based Video Description and (ii) LLM-
Based AD Summary.
MM-Narrater [17]. MM-Narrater employs specialized
vision and audio expert models to extract multimodal
information from the input video clip. The outputs, along
with movie subtitles and previous AD descriptions are used
to build prompt to query GPT-4 [8] or GPT-4V [9] for
AD generation. Besides, MM-Narrater utilizes retrieval
enhancement and in context learning to improve the quality
of generated AD.

B.4. Metircs
In this paper, we use both classic captioning metrics and
newly proposed metrics for evaluation. Classic captioning
metrics include ROUGE-L [6] and CIDEr [14]. In this
section, we mainly introduce newly proposed metrics:
R@k/N, CRITIC and LLM-AD-eval.
R@k/N [3]: R@k/N is a retrieval metric that distinguishes
the predicted text among a set of neighbours. The pa-
rameters k and N mean within a temporal window of N
neighbouring reference ADs, whether the predicted AD can
retrieve the corresponding reference AD at top-k position.
CRITIC [4]: CRITIC assesses the precision of charac-
ter recognition in generated ADs. Specifically, a co-
referencing model is utilized to substitute ambiguous pro-
nouns in ADs with official names from the character banks.
Subsequently, two sets of names from predicted and ground
truth ADs are compared, and the IoU is computed to yield
a CRITIC score.
LLM-AD-eval [4]: LLM-AD-eval utilises LLMs to judge
the quality of generated ADs by scoring them between 1
(lowest) and 5 (highest). We use llama2-7b-chat [13] for
the evaluation in our experiments.

C. More Ablation Studies
In this section, we explore more ablation studies on our
Uni-AD, which are not displayed in the main paper due to
space limitation. All experiments are conducted with the
character-refinement module and no pre-training is applied.

C.1. Ablation on visual mapping network
As stated in Sec. 3.2 of the main paper, there are multiple
reasons why we choose a multi-layer transformer encoder
with a fixed number of learnable vectors as our mapping
network. Here we compare our visual mapping network

Table S3. Ablation on the structure of visual mapping network.
latent denotes the number of learnable vectors in our visual
mapping network. Experiments are conducted with Uni-AD(GPT-
2-B32)

Visual mapping network RL↑ C↑ R@5/16↑
MLP 14.0 20.2 45.5

Transformer encoder 15.2 23.4 49.2
Ours(latent=10) 15.4 22.4 49.0
Ours(latent=30) 15.7 23.7 49.4

Table S4. Ablation on the impact of sharing visual mapping
network. Share? shows whether we encode both video and image
with one single visual mapping network.

Methods Share? RL↑ C↑ R@5/16↑
Uni-AD

(GPT-2-B32)
✗ 15.7 23.7 49.4
✓ 15.5 22.9 48.8

Uni-AD
(LLaMA-L14)

✗ 16.5 25.9 52.5
✓ 16.3 25.8 53.6

with two different visual mapping designs: MLP and
multi-layer transformer encoder without learnable vectors.
Results in Tab. S3 show that no interaction between
video frames (MLP as visual mapping network) gets the
worst performance. Allowing interaction between video
frames(transformer encoder as visual mapping network)
brings better results, but the length of visual embeddings
is limited to be consistent with the number of frames(8 in
our experiments). Our visual mapping network with 30
learnable vectors performs the best.

C.2. Ablation on sharing visual mapping network
Since in Uni-AD, the structure of video mapping network
is the same as image mapping network, we in this section
study the impact of using a single visual mapping network
to encode both video and image. The results are shown in
Tab. S4. We can see that encoding video and image with two
separate mapping networks is important to Uni-AD(GPT-
2-B32), while not necessary for Uni-AD(LLaMA-L14).
This reflects that when visual features and LLM are good
enough, images and videos can be mixed together for
training the mapping network.

C.3. Ablation on image-video interaction
In the main paper, we encode video and image into visual
tokens and apply the frozen LLM for interaction between
video and image. To study whether more interaction
between image and video can benefit AD generation, we re-
place the input of visual mapping network as concatenation
of image and video. Specifically, we replace the input with
concatenation of current character’s image and the video
for image mapping network. For video mapping network,
we replace the input with concatenation of all recognized



Table S5. Ablation on more interaction between image and
video. Inter-I.? shows whether we concatenate character’s image
and the video clip as input of image mapping network. Inter-V.?
shows whether we concatenate all character images and the video
clip as input of video mapping network.

Methods Inter-I.? Inter-V.? RL↑ C↑ R@5/16↑

Uni-AD
(GPT-2-B32)

✗ ✗ 15.7 23.7 49.4
✗ ✓ 15.7 23.1 49.2
✓ ✗ 15.7 23.6 49.1
✓ ✓ 15.5 23.8 49.1

Uni-AD
(LLaMA-L14)

✗ ✗ 16.5 25.9 52.5
✗ ✓ 16.5 25.4 53.2
✓ ✗ 16.5 25.7 52.2
✓ ✓ 16.3 25.0 52.5

characters and the video. In this way, we investigate
whether the visual mapping network can extract better
character and video representations by more interaction.
The results are shown in Tab. S5, which indicates that more
interaction between image and video for visual mapping can
not further benefit our Uni-AD.

C.4. Ablation on the Threshold in Character-
Refinement Module

We conduct ablation study on the impact of threshold
in Character-Refinement Module to our Uni-AD and the
results in Tab. S6 show that the threshold has a considerable
impact on AD generation. High threshold may lead to
excessive loss of character information thus gets poor
results.

Table S6. Ablation on the Threshold value in Character-
Refinement Module.

Threhold RL↑ C↑ R@5/16↑ Threhold RL↑ C↑ R@5/16↑
0.3 16.5 25.7 52.4 0.5 16.8 27.3 53.3
0.7 16.2 24.8 55.4 0.9 12.8 16.1 54.3

D. Additional Qualitative Analyses
Figure S1 and Figure S2 shows more qualitative results

of Uni-AD on the MAD-eval dataset. Note that our
character-refinement module can not only recognize AD-
related characters, but also serve as a character information
denoiser. For example, in sample (a) where characters
Graham and Merrill do not appear in the video clip but
are included in the character bank, our character-refinement
module removes these noises and provides more precise
character information. Though AD without character-
refinement module also focuses on describing the female
police officer, it can not figure out who she is since there are
noises in the initial character bank, thus mistakes Caroline
as Merrill’s mom. In sample (c), we find that with more
learnable vectors, our model can take the female character
who appears at the beginning into AD generation. However,

GT AD: CAROLINE gives them a patronizing look.
Char Info w/o char-refine: GRAHAM played by Mel Gibson, MERRILL played by 
Joaquin Phoenix, CAROLINE played by Cherry Jones.
Pred AD w/o char-refine: Merrill's mom shakes her head.
Char Info with char-refine: CAROLINE played by Cherry Jones.
Pred AD with char-refine: CAROLINE nods.

(a)

GT AD for the first two frames: Duffy gives a nod.
GT AD for the last two frames : Duffy abruptly turns away and leaves the room.
Pred AD w/o contextual info: Duffy nods. Duffy nods.
Pred AD with contextual info: Duffy shifts his gaze. Duffy walks away.

(b)

Figure S1. Qualitative analysis on character-refinement module
and contextual information. Movies are selected from (a): Signs
(2002), (b): The Ides of March (2011).

GT AD: Stephen shoots her a brief look as Stephen moves past the desks of the busy 
staffer.
Pred AD(num latent=1): Stephen glances around the classroom as he walks to his desk.
Pred AD(num latent=5): Stephen glances over his shoulder.
Pred AD(num latent=10): Stephen glances at her, then walks away.
Pred AD(num latent=30): As he walks away, Stephen glances over his shoulder at her.

(c)

GT AD: Holding Cosette, Valjean turns and sees a man with a spade. 
ClipCap: person and the child in dark.
AutoAD-II: the boy looks up at his father, who stares back at him with a furrowed 
brow.
MM-Narrator: Jean Valjean and Cosette, shrouded in darkness, cautiously approach 
the church’s exit, their escape imminent.
Ours: Outside, FANTINE leads the children through a graveyard.

(d)

Figure S2. Qualitative analysis on number of learnable vectors and
comparison with other approaches. Movies are selected from (c):
The Ides of March (2011), (d): Les Misérables (2012).

the female character is just ignored by our Uni-AD with
fewer learnable vectors.
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Fabian Caba Heilbron, Chen Zhao, Silvio Giancola, and
Bernard Ghanem. MAD: A scalable dataset for language
grounding in videos from movie audio descriptions. In
CVPR, pages 5016–5025. IEEE, 2022. 1

[13] Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale,
Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor

Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang
Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
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