
Appendix

1. Training Datasets

We trained our model on 32 datasets that covers a diverse
range of scene types, including static and dynamic envi-
ronments, as well as indoor, outdoor, and object-centric
scenarios. A complete list of these datasets is provided in
Tab. 1.

The original MapFree [1] and DL3DV [21] datasets do
not include dense depth maps. We performed multi-view
stereo (MVS) reconstruction [28] using the provided cam-
era parameters to generate dense depth maps. This re-
sults in complete annotations for these datasets for training.
RealEstate10K [53], CoP3D [30], and MVImgNet [48] also
do not provide dense depth maps. For these three datasets,
we only use the provided camera parameters to supervise the
camera prediction. For RealEstate10K, we only include a
subset of 2325 training scenes for training.

EDEN [18], IRS [38], Synscapes [42], SmartPor-
traits [17], and HOI4D [22] are treated as single views. To
train on single-view datasets with a specified context length,
we construct sequences by stacking independent views to
the desired context length, and importantly always reset the
state to s0 after each view. This allows us to jointly train
using both multi-view and single-view data within the same
batch. Although both EDEN [18] and SmartPortraits [17]
provide camera poses, EDEN [18] lacks clear documenta-
tion of camera conventions, and SmartPortraits [17] offers
camera poses that are not synchronized with RGBD frames.
Therefore, we treat both as single-view datasets.

For PointOdyssey [52], we filter scenes with incor-
rect depth annotations (mostly scenes with fogs, like
cab h bench ego2) and scenes with unrealistic motion
and material (like Ani). For BEDLAM [4], we remove
scenes with panorama backgrounds.

2. More Implementation Details

Sequence Sampling Details. Our training dataset com-
prises a combination of video sequences and unordered
photo collections. For video sequences, we subsample
frames at intervals randomly selected between 1 and k,
where k is set for each dataset based on its frame rate and
camera motion. Within each sequence, either variable or
fixed intervals are used, each accounting for approximately
half of the samples. For photo collections, we use simi-
lar methods as in DUSt3R [39] and compute the overlap
ratios between images to guide the frame sampling. Addi-
tionally, when the scene from a video is largely static, we

shuffle the frames and treat them as a photo collection to
increase data diversity. When the sequences contain major
dynamic objects (like sequences from BEDLAM [4] and
PointOdyssey [52] datasets), we only treat them as videos
and feed frames into the model in temporal order using a
fixed interval.

When the data is metric scale, frames (excluding the first
frame) in a sequence are randomly masked with a 20% prob-
ability and replaced by their corresponding raymap inputs,
using ground truth intrinsics and poses. Note that raymap
mode is activated only when data are in metric scale, as
our model learns metric-scale 3D scene priors. When the
3D annotation is at an unknown scale, raymap querying is
disabled to avoid scale inconsistency with the scene content
captured in the state.

More Architecture Details. Similar to DUSt3R [39], we
reduce training costs by first training the model on 224×224
image resolution with linear heads, and then increasing
the resolution and setting the longer side of the images to
512 pixels. Specifically, in the first two stages of training,
Headself and Headworld are implemented as linear layers. In
the final two stages, Headself and Headworld are switched
to DPT [25] architecture. Compared to Headself, Headworld
incorporates an additional modulation function, which modu-
lates F ′

t using the pose token z′
t within the Layer Normaliza-

tion layers. This modulation design is inspired by LRM [11]
and aims to integrate pose information to achieve implicit
rigid transformations. Specifically, within Headworld, we
first use two self-attention blocks modulated by the pose
token z′

t to generate the pose-modulated tokens, which is
then fed as input to either the linear or DPT architecture to
generate the final pointmap output X̂world

t . The dimension of
z′
t is 768, and Headpose is a 2-layer MLP whose hidden size

is 768. We apply Rotary Positional Embedding (ROPE) [32]
to the query and key feature before each attention operation.

More Training Details. In the first stage of training, we
use the following datasets: ARKit, ARKit-HighRes, Scan-
Net, ScanNet++, TartanAir, Waymo, MapFree, Blended-
MVS, HyperSim, MegaDepth, Unreal4K, DL3DV, CO3Dv2,
WildRGBD, and VirtualKITTI2. In the second stage, we
incorporate the rest of datasets. In the final stage (long con-
text training), we exclude single-view datasets (EDEN, IRS,
Synscapes, 3D Ken Burns, SmartPortraits, UrbanSyn, and
HOI4D) and train only on multi-view datasets, as the goal of
the final stage training is to enhance scene-level reasoning
within a sequence. Unlike DUSt3R, which applies color
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Dataset Name Scene Type Metric? Real? Dynamic? Camera only? Single View?

ARKitScenes [2] Indoor Yes Real Static No No
ARKitScenes-HighRes [2] Indoor Yes Real Static No No
ScanNet [9] Indoor Yes Real Static No No
ScanNet++ [47] Indoor Yes Real Static No No
TartanAir [40] Mixed Yes Synthetic Dynamic No No
Waymo [33] Outdoor Yes Real Dynamic No No
MapFree [1] Outdoor Yes Real Static No No
BlendedMVS [46] Mixed No Synthetic Static No No
HyperSim [27] Indoor Yes Synthetic Static No No
MegaDepth [20] Outdoor No Real Static No No
Unreal4K [36] Mixed Yes Synthetic Static No No
DL3DV [21] Mixed No Real Static No No
CO3Dv2 [26] Object-Centric No Real Static No No
WildRGBD [44] Object-Centric Yes Real Static No No
VirtualKITTI2 [6] Outdoor Yes Synthetic Dynamic No No
Matterport3D [7] Indoor Yes Real Static No No
BEDLAM [4] Mixed Yes Synthetic Dynamic No No
Dynamic Replica [14] Indoor Yes Synthetic Dynamic No No
PointOdyssey [52] Mixed Yes Synthetic Dynamic No No
Spring [23] Mixed Yes Synthetic Dynamic No No
MVS-Synth [13] Outdoor Yes Synthetic Dynamic No No
UASOL [3] Outdoor Yes Real Static No No
OmniObject3D [43] Object-Centric Yes Synthetic Static No No
RealEstate10K [53] Indoor No Real Static Yes No
MVImgNet [48] Object-Centric No Real Static Yes No
CoP3D [30] Object-Centric No Real Dynamic Yes No
EDEN [18] Outdoor Yes Synthetic Static No Yes
IRS [38] Indoor Yes Synthetic Static No Yes
Synscapes [42] Outdoor Yes Synthetic Dynamic No Yes
3D Ken Burns [24] Mixed No Synthetic Static No Yes
SmartPortraits [17] Indoor Yes Real Dynamic No Yes
UrbanSyn [10] Outdoor Yes Synthetic Dynamic No Yes
HOI4D [22] Indoor Yes Real Dynamic No Yes

Table 1. Training Datasets. We provide more details of our training datasets. We classify a dataset as dynamic if annotations exist for
moving objects like humans. If there is only camera parameters (intrinsics and extrinsics) available, we mark them as “camera only”. If the
dataset only contains depth and intrinsics for single views, we mark them as “single view”.

jittering to each image independently, we perform sequence-
level color jittering by applying the same color jitter across
all frames in a sequence.

3. More Comparisons

Video Depth Estimation. We expand the video depth
comparison in the main paper and compare with a wider
range of baseline methods, including single-frame depth
techniques (Marigold [15] and Depth-Anything-V2 [45]),
video depth approaches (NVDS [41], ChronoDepth [29],
and DepthCrafter [12]), and joint depth-and-pose methods

such as Robust-CVD [16], CasualSAM [50], DUSt3R [39],
MASt3R [19], MonST3R [49], and Spann3R [37]. The re-
sults are shown in Tab. 2.

Camera Pose Estimation Similar to video depth estimation,
we include a diverse set of baselines for camera pose esti-
mation. Learning-based visual odometry methods, such as
DROID-SLAM [34], DPVO [35], and LEAP-VO [8], require
ground truth camera intrinsics as input. Optimization-based
methods, including Particle-SfM [51], Robust-CVD [16],
CasualSAM [50], DUSt3R-GA [39], MASt3R-GA [19], and
MonST3R-GA [49], generally operate more slowly com-



Sintel BONN KITTI

Alignment Method Optim. Onl. Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ <1.25 ↑ FPS

Per-sequence
scale & shift

Marigold [15] ✓ 0.532 51.5 0.091 93.1 0.149 79.6 <0.1
Depth-Anything-V2 [45] ✓ 0.367 55.4 0.106 92.1 0.140 80.4 3.13
NVDS [41] ✓ 0.408 48.3 0.167 76.6 0.253 58.8 -
ChronoDepth [29] ✓ 0.687 48.6 0.100 91.1 0.167 75.9 1.89
DepthCrafter [12] ✓ 0.292 69.7 0.075 97.1 0.110 88.1 0.97
Robust-CVD [16] ✓ 0.703 47.8 - - - - -
CasualSAM [50] ✓ 0.387 54.7 0.169 73.7 0.246 62.2 -
DUSt3R-GA [39] ✓ 0.531 51.2 0.156 83.1 0.135 81.8 0.76
MASt3R-GA [19] ✓ 0.327 59.4 0.167 78.5 0.137 83.6 0.31
MonST3R-GA [49] ✓ 0.333 59.0 0.066 96.4 0.157 73.8 0.35
Spann3R [37] ✓ 0.508 50.8 0.157 82.1 0.207 73.0 13.55
Ours ✓ 0.454 55.7 0.074 94.5 0.106 88.7 16.58

Per-sequence scale

DUSt3R-GA [39] ✓ 0.656 45.2 0.155 83.3 0.144 81.3 0.76
MASt3R-GA [19] ✓ 0.641 43.9 0.252 70.1 0.183 74.5 0.31
MonST3R-GA [49] ✓ 0.378 55.8 0.067 96.3 0.168 74.4 0.35
Spann3R [37] ✓ 0.622 42.6 0.144 81.3 0.198 73.7 13.55
Ours ✓ 0.421 47.9 0.078 93.7 0.118 88.1 16.58

Metric scale
MASt3R-GA [19] ✓ 1.022 14.3 0.272 70.6 0.467 15.2 0.31
Ours ✓ 1.029 23.8 0.103 88.5 0.122 85.5 16.58

Table 2. Video Depth Evaluation. We report scale&shift-invariant depth, scale-invariant depth and metric depth accuracy on Sintel, Bonn,
and KITTI datasets. Methods requiring global alignment are marked “GA”, while “Optim.” and “Onl.” indicate optimization-based and
online methods, respectively. We also report the FPS on KITTI dataset using 512× 144 image resolution for all methods, except Spann3R
which only supports 224×224 inputs.

Sintel TUM-dynamics ScanNet

Method Optim. Onl. ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓

DROID-SLAM [34] ✓ 0.175 0.084 1.912 - - - - - -
DPVO [35] ✓ 0.115 0.072 1.975 - - - - - -
LEAP-VO [8] ✓ 0.089 0.066 1.250 0.068 0.008 1.686 0.070 0.018 0.535

Particle-SfM [51] ✓ 0.129 0.031 0.535 - - - 0.136 0.023 0.836
Robust-CVD [16] ✓ 0.360 0.154 3.443 0.153 0.026 3.528 0.227 0.064 7.374
CasualSAM [50] ✓ 0.141 0.035 0.615 0.071 0.010 1.712 0.158 0.034 1.618
DUSt3R-GA [39] ✓ 0.417 0.250 5.796 0.083 0.017 3.567 0.081 0.028 0.784
MASt3R-GA [19] ✓ 0.185 0.060 1.496 0.038 0.012 0.448 0.078 0.020 0.475
MonST3R-GA [49] ✓ 0.111 0.044 0.869 0.098 0.019 0.935 0.077 0.018 0.529

DUSt3R [39] ✓ 0.290 0.132 7.869 0.140 0.106 3.286 0.246 0.108 8.210
Spann3R [37] ✓ 0.329 0.110 4.471 0.056 0.021 0.591 0.096 0.023 0.661
Ours ✓ 0.213 0.066 0.621 0.046 0.015 0.473 0.099 0.022 0.600

Table 3. Evaluation on Camera Pose Estimation on Sintel [5], TUM-dynamic [31], and ScanNet [9] datasets. Note that unlike the the rest
of the methods, the three methods in the first section require ground truth camera intrinsics as input.

pared to online methods like Spann3R [37] and our proposed
approach. To assess performance in an online setting, we
also evaluate DUSt3R without global alignment. The results
are presented in Tab. 3.
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