
Supplementary Material–
DOF-GS: Adjustable Depth-of-Field 3D Gaussian Splatting for
Post-Capture Refocusing, Defocus Rendering and Blur Removal

Yujie Wang1,2,3 Praneeth Chakravarthula3† Baoquan Chen1,2†

1State Key Laboratory of General Artificial Intelligence, Peking University
2School of Intelligence Science and Technology, Peking University

3University of North Carolina at Chapel Hill

1. Derivatives of the differentiable DOF rendering

In this section, we elaborate on the derivation of key derivatives. Since the majority of the gradient calculations are already
incorporated within the customized rasterization process [1], we focus solely on deriving the derivatives of the gradient
pertaining to the affected or newly introduced variables in our differentiable depth-of-field (DOF) rendering process. For
brevity, we omit the subscript index m for viewpoint.

Since the convolution of two Gaussians results in another Gaussian whose covariance matrix is the sum of the covariance
matrices of the original Gaussians [9], the covariance of G′′

k is derived as follows:
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By exploiting the chain rule, we can calculate the derivatives w.r.t. focal distance f , aperture parameter Q and depth value zk
through the following formulas:
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And the derivative for Q is calculated as
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Since dΣ′
k

dzk
in Equation (4) has been provided in the rasterization-based rendering of 3DGS [1], we calculate gradient for zk by

additionally accumulating the derivative w.r.t. zk relative to a:
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In our pipeline, which is designed to learn camera characteristics for the introduced depth-of-field rendering process and to
recover scene details from uncalibrated images with moderate defocus blur, we heuristically initialize the focal distance f
and aperture parameters Q for each input view and update them through optimization. The initialization strategy is discussed
in Section 2.1. To prevent Gaussian points from being influenced by the focal distance parameters that are actively updated
during the optimization process, we disable gradient flow from Σ

(coc)
k to zk during the optimization.

2. Additional Implementation Details
In this section, we provide additional implementation details of our approach. Specifically, we outline the initialization of
virtual cameras for training views in Section 2.1, describe the optimization settings in detail in Section 2.2, and present further
information about parameter settings and the network structure of the In-Focus Localization Network (ILN) in Section 2.3.

2.1. Camera Parameter Initialization
As the labels for focal distances {fm}Mm=1 and aperture parameters {Qm}Mm=1 across different views are unavailable, an
initialization process is required. We simply initialize the focal distances and aperture parameters to be the same value for
different views, which avoids a too dedicated manual initialization. Specifically, to avoid introducing bias for focal distances
before the optimization, we initialize fm as the median diopter value among all Gaussian points:
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Initializing fm to be the median diopter value also helps avoid heavily biased CoC radius values across different depth planes
at early iterations. Meanwhile, we initialize the aperture parameter Qm by ensuring that the CoC values for different points are
not greater than a threshold τ . Specifically, the maximum CoC value across the scene occurs at the closest or most distant
points when the focal plane is exactly at the opposite side. Thus Qm is initialized by solving
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which ensures that the most CoC values across the entire scene are not greater than τ . In practice, we use 10-th and 90-th
percentiles as minimum and maximum values (min

{
1
zk

}
and max

{
1
zk

}
) respectively, to mitigate the influence of outliers

within the initialized point cloud. The τ is empirically set to 15 for different scenes in our implementation, as the optimization
process will actively update the camera parameters.

2.2. Optimization Process
We divide the entire training process into two stages: a warm-up stage and a refinement stage. In the initial 5, 000 iterations,
as the Gaussian points and camera parameters undergo significant changes, we employ only Lrec as the training objective.
This allows the Gaussian points and camera parameters to adjust to fit the training views using the DOF rendering process.
After this stage, the Gaussian points and camera parameters become relatively stable, resulting in the rendered CoC map
M(coc) becoming highly correlated with the pixel-wise blur extent within the training views. At this point, we begin leveraging
CoC cues in conjunction with supervisions on the rendered All-in-Focus images to further refine and enhance scene details.
Specifically, we introduce and use the In-Focus Localization Network (ILN) to identify in-focus regions within training views
from the rendered CoC map and other information including rendered defocused image and depth map. Meanwhile, we
deactivate Lrec and activate the remaining three terms for subsequent iterations. Additionally, we observe that the initial point
clouds, derived from blurry images that contain multi-view inconsistent blurry regions, are sparse. The sparse initialization
requires a large amount of iterations for point cloud densification to recover the fine details. To enhance the optimization
efficiency and detail recovery, we add 60, 000 uniformly distributed points across the scene at the 2, 000-th iteration, a point at
which the scene S and camera parameters have been substantially optimized. The attributes of the newly added points are set
according to its nearest neighbors. We briefly summarize the optimization process in Algorithm 1.



Algorithm 1: Optimization Process of DOF-GS

Input: Multi-view images {Im}Mm=1

Output: 3D scene S = {Gk}Kk=1, camera parameters {fm, Qm}Mm=1

Estimate camera poses and a sparse initial point cloud from SfM;
Initialize camera parameters according to Section 2.1;
for iter < number of iterations do

Randomly sample a viewpoint m;

Render a Defocused Image ˜̃Im, CoC mapM(coc)
m and Depth map ˜̃Dm;

if iter < 5, 000 then
L ← Lrec ;

▷ Only activate Lrec ;
S, fm, Qm ← Adam(∇L) ;

▷ Backward and update 3D Gaussian points and related camera parameters ;
end
else

Render an All-in-Focus image ˜̃I∗m;

M∗
m ← ILN

(
˜̃Im, ˜̃Dm, M(coc)

m , pe(m), pe(x)
)

;

▷ Use ILN to estimate an in-focus mask ;
L ← Ldetail + λmkLmk + λregLreg ;

▷ Deactivate Lrec and activate remaining loss terms;
S, fm, Qm,Ω← Adam(∇L);

▷ Backward and update, Ω denotes network parameters ;
end

end

2.3. Parameter Settings and Network Structure

Learning-Rate Settings. We set the initial learning rate for the center positions of 3D Gaussian points at 0.0005, which
linearly decays to 0.000005 over 40, 000 iterations. The learning rate for the scales of Gaussian points is set to 0.01. Moreover,
the learning rate for focal distances is set at 0.05, and that for aperture parameters is set to 0.01. The In-Focus Localization
Network is trained with a learning rate of 0.0005. The remaining parameters retain the settings given in the method[1].

Network Structure. In Table 1, we detail the structure of the In-Focus Localization Network (ILN). As indicated, ILN
comprises four 2D convolutional layers. The first two layers are dedicated to extracting contextual information from inputs
that combine the rendered CoC map M(coc)

m , defocus image ˜̃Im, and depth map ˜̃Dm. Consequently, the input to the first layer
has 5 channels, while the second layer receives 48 channels, matching the output feature map dimension from the first layer.
The third convolutional layer, which also incorporates injected positional encoding information with 48 channels, thus receives
a total of 64 channels. The final layer receives the feature from the third layer and outputs the mask M∗

m. To ensure that the
output falls within the range [0,1], we apply a Sigmoid() activation after the last layer.

Table 1. Detailed structure of the In-Focus Localization Network. ”Conv2d” denotes 2D convolutional layer.

Idex Layer Kernel Stride Padding Input ch. Output ch.
1 Conv2d + ReLU() 3×3 1 1 5 48
2 Conv2d 3×3 1 1 48 16
3 Conv2d 1×1 1 1 64 20
4 Conv2d + Sigmoid() 1×1 1 1 20 1
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Figure 1. Visualization of focal distances post-optimization on two scenes from the real defocus dataset. The focal distances are transformed
to diopters for visualization and normalized within the range [0, 1] according to the diopter range of points within the point cloud. The focal
distances optimized using our method for various views closely align with the ranges labeled manually.

3. Additional Experimental Results

In this section, we provide additional experimental results. Specifically, we provide more results for focal distance analysis
in Section 3.1, showcase additional qualitative results for post-capture control of focal distance and aperture parameter in
Section 3.2, investigate the impact of training with defocused images on rendered depth-of-field effects in Section 3.3, present
quantitative results and more visual results for All-in-Focus novel view synthesis in Section 3.4, and include visual results
from the variants explored in our ablation studies in Section 3.5.

3.1. Additional Results for Focal Distance Analysis

In addition to the focal distance analysis conducted on the Cake scene from the real defocus dataset, for which the results are
provided in the main paper, we also examine the optimized focal distance parameters for training views of two additional
scenes: Cupcake and Tools. The corresponding visualization results are presented in Figure 1. As shown in Figure 1, the focal
distance parameters optimized on these two scenes closely match the manually annotated ranges of possible focal distances
used during image capture. These results further demonstrate that the introduced finite-aperture camera model, combined with
the proposed differentiable depth-of-field rendering process, is highly physically grounded and is able to effectively learn
camera characteristics from defocused multi-view inputs.

3.2. Additional Results for Post-Capture Control

To demonstrate that our method enables depth-of-field rendering via post-capture control of aperture and focal distance
parameters, we provide additional results on three scenes in Figure 2. As shown in Figure 2, the in-focus regions maintain
sharp when the focal distance is set around their depth planes, while the out-of-focus regions demonstrate varying levels of
blur with the change of aperture parameter. For instance, the fruit area in the first scene, the cookie pattern in the second scene,
and the fine golden metallic structure in the third scene remain sharp at focal distances of 70, 109, and 48, respectively, even
as the aperture parameter Q is adjusted from 101 to values exceeding 200 or even 300. Meanwhile, objects at other depth
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Figure 2. Results for post-capture controllable depth-of-field rendering from our method. Adjustments to the focal distance primarily
influence the positioning of in-focus and out-of-focus regions, with in-focus areas highlighted in pink. Meanwhile, increasing the aperture
parameter increasingly enhances the blur effect in out-of-focus regions.



planes exhibit progressively pronounced blurriness, as seen in the enlarged out-of-focus regions presented in each column.
Specifically, each column highlights the effects on a single region under varying aperture parameters, effectively illustrating
the depth-of-field effect achieved by our approach. It can also be observed that the positions of the in-focus and out-of-focus
regions shift as the focal distance is adjusted, which allows us to achieve refocusing effects. Furthermore, simultaneously
altering the focal distance and aperture parameter produces compounded effects.

3.3. Influence of Training with Defocused Images

To validate the rationale behind training our method on multi-view defocused images for achieving post-capture control of
depth-of-field rendering, we examine the rendered defocused images on scenes optimized using sharp All-in-Focus images.
Specifically, the synthetic scenes from the dataset [4] provide ground-truth All-in-Focus images along with multi-view
defocused images, enabling a comparative investigation. In our study, we train our approach separately on multi-view sharp
images and on multi-view inconsistent defocused images. After optimization, we render defocused images from the scenes
reconstructed under these two training settings. Exemplary results of the rendered defocused images from this investigation
are presented in Figure 3.

As shown in Figure 3, depth-of-field (DOF) effects rendered from scenes reconstructed using sharp images during training
exhibit undesired artifacts when camera parameters are adjusted in the DOF rendering process. Specifically, due to the absence
of guidance from natural defocus blur in the training images, the 3D Gaussian points in the scene are primarily optimized to
composite sharp All-in-Focus images. During the DOF rendering process, when these Gaussian points are convolved with
depth-related blur kernels, they fail to generate natural and smooth defocus blur. Instead, the blurred Gaussian points cause
objects in the out-of-focus regions to appear dilated and artificially ”enhanced. For example, in the rear-focus rendered images,
objects in closer regions, such as the stairs, the plant, and the ’Coca Cola’ text, become increasingly dilated as the aperture
parameter increases. Similarly, in the near-focus rendered images, the distant stone pillar does not exhibit any blur but instead
becomes more dilated with increasing aperture, to the extent that it appears as a single, merged structure. These dilation effects
result in a misleading ”enhancement” of objects in the defocused regions, preventing the images from correctly conveying the
intended depth and focus cues.

In contrast, the rear-focus and near-focus images rendered from scenes trained with defocused images exhibit natural and
smooth defocus blur in closer and distant regions, respectively, effectively conveying correct focus cues. Additionally, the
defocus blur adaptively changes as the aperture parameter is adjusted. This demonstrates the effectiveness of training with
defocused images in achieving realistic depth-of-field rendering with our approach.

3.4. Additional Results for All-in-Focus Novel View Synthesis

In this section, we give comprehensive quantitative results for All-in-Focus novel view synthesis on both the real and synthetic
datasets and present visual results.

Results on Real dataset. In Table 2, we present the numerical results of our approach on the task of All-in-Focus novel
view synthesis, comparing them against vanilla NeRF [5], Mip-Splatting [8], and several state-of-the-art deblur-focused
methods [2–4, 6, 7]. As shown in Table 2, the performance of Mip-Splatting [8] is slightly lower than that of vanilla NeRF
[5]. This discrepancy arises because, although both methods produce reconstructed scenes with blurry regions caused by
defocus blur, the multi-view inconsistencies introduced by defocus blur make the 3DGS-based Mip-Splatting method more
prone to generating artifacts in novel views compared to the smoother MLP-based representations used in vanilla NeRF. This
phenomenon is visually demonstrated in the first two rows of Figure 4.

NeRF-based deblur-focused methods, such as Deblur-NeRF [4], DP-NeRF [3], and PDRF [6], significantly improve
performance compared to vanilla NeRF by differentiably simulating defocus blur during the rendering process. Among these,
the PDRF method proposed by Peng et al. [6] achieves the highest average PSNR score (24.31 dB) and SSIM value. Among
the 3DGS-based methods, our approach achieves comparable performance to the state-of-the-arts BAGS and Deblur-GS.
Specifically, BAGS achieves highest PSNR score, our method achieves highest SSIM score. The visual results in Figure 4
further demonstrate that our method is able to achieve sharp All-in-Focus renderings, suggesting that our approach effectively
reconstruct the fine details from multi-view inputs with defocus blur.
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Figure 3. Rendered depth-of-field effects post-optimization from our approach under two training settings. The pink and orange blocks
highlight the out-of-focus regions in the near-focus and rear-focus images. When adjusting camera parameters in our depth-of-field rendering
module on scenes optimized on sharp All-in-Focus images, out-of-focus regions fail to exhibit natural smooth defocus blur. Instead, the
Gaussian points after convolution operations cause objects in the out-of-focus regions to appear dilated and seemingly ”enhanced,” which
undermines the ability of such defocus effects to effectively convey focus cues. In contrast, training on multi-view defocused images allows
the optimized Gaussian points to form smooth, depth-related defocus blur via adjusting the camera parameters.
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Figure 4. Visual results for All-in-Focus novel view synthesis on real and synthetic defocus dataset. Enlarged regions are provided for better
visualization. The first and second rows show results on two scenes from the real defocus dataset, while the third and fourth rows show
results from two scenes from the synthetic defocus dataset.

Results on Synthetic dataset. In Table 3, we present the numerical results for All-in-Focus novel view synthesis on the
synthetic dataset. The performance trends are similar to those observed in the real dataset. Notably, Mip-Splatting produces a
much lower average SSIM score than vanilla NeRF as it produces severe artifacts in rendered images for the Pool scene, which
is demonstrated in Figure 4. Regarding the BAGS method, for which the authors provide dedicated settings for each scene
within the real dataset but without providing configurations for the synthetic scenes, we apply it to the synthetic dataset using a
uniform configuration. Following from their configurations on scenes from the real data, we set a relatively large number of
iterations (45,000) with 9,000 dedicated to coarse-to-fine optimization.

The PSNR and SSIM score of our method surpass those of Deblur-NeRF and DP-NeRF and are on par with the other
two 3DGS-based methods, BAGS and Deblur-GS. As shown in Table 3, the PSNR and SSIM scores for the 3DGS-based
methods are slightly lower than those of the NeRF-based method PDRF [6]. This is likely caused by the differences in
camera pose: the 3DGS-based methods, including our approach, BAGS, and Deblur-GS, rely on camera poses estimated using
structure-from-motion (SfM) methods from multi-view inputs containing defocus blur. In contrast, NeRF-based methods,
such as PDRF, utilize ground-truth camera poses provided by Blender. The visual results on synthetic scenes presented in
Figure 4 exhibit similar trends to those observed in the real dataset scenes. Our method demonstrates enhanced detail recovery
compared to the NeRF-based methods and achieves comparable detail restoration to BAGS and Deblur-GS.

Table 2. Nemerical results on real defocus dataset.

Cake Caps Cisco Cupcake Cups Daisy Sausage Seal Tools Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NeRF 24.60 .7296 22.68 .6316 20.97 .7267 21.85 .6776 24.96 .7556 22.85 .6237 17.79 0.4874 22.88 .6266 25.75 .8510 22.70 .6789
Mip-Splatting 21.75 .6268 21.62 0.5355 19.85 .6902 21.26 .6719 21.09 .6403 21.63 .6181 17.83 .4719 22.27 .6006 23.80 .8069 21.23 .6292
Deblur-NeRF 26.17 .7777 24.03 .7158 20.74 .7241 22.58 .7352 26.44 .8081 23.94 .7027 18.23 .5195 25.98 .7768 27.67 .8893 23.98 .7388
DP-NeRF 26.16 .7782 23.90 .7123 20.77 .7279 23.03 .7467 26.92 .8194 23.76 .6958 18.48 .5462 26.19 .7857 27.90 .8937 24.12 .7451
PDRF 27.00 .7961 24.15 .7157 20.72 .7279 22.98 .7459 26.22 .8071 24.37 .7419 18.91 .5662 26.44 .8025 28.01 .9001 24.31 .7559
BAGS 26.86 .8093 24.35 .7326 20.68 .7362 23.08 .7648 25.82 .8184 23.76 .7475 18.83 .5707 26.51 .8142 27.60 .9043 24.17 .7664
Deblur-GS 27.08 .8076 24.68 .7437 21.06 .7409 22.65 .7477 26.26 .8240 23.70 .7268 18.74 .5539 26.25 .8197 27.58 .9037 24.21 .7631
Ours 26.87 .8066 24.63 .7485 20.84 .7399 22.70 .7542 25.98 .8261 23.48 .7343 19.11 .5737 25.75 .8135 27.73 .9033 24.12 .7667
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Figure 5. Visual results for ablation study. The variant ’Ours (w/o. detail enhance) is prone to producing apparent artifacts at the closest
or farthest regions, i.e., regions that are easier to be absent from some input views. The phenomena stem from its reduced utilization of
information from in-focus regions across different training views. All of the images are rendered under the All-in-Focus setting.

Table 3. Quantitative results on the synthetic defocus dataset.

Cozyroom Factory Pool Tanabata Trolley Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NeRF 30.12 .8939 24.40 .7680 27.87 .7294 23.79 .7790 22.54 .7141 25.74 .7769
Mip-Splatting 29.83 .8990 23.04 .7866 19.78 .4212 23.64 .8109 22.37 .7393 23.73 .7314
Deblur-NeRF 31.89 .9172 26.36 .8455 30.07 .8159 26.19 .8515 25.57 .8151 28.02 .8491
DP-NeRF 32.23 .9248 27.14 .8608 31.48 .8532 27.05 .8668 26.67 .8377 28.91 .8687
PDRF 31.84 .9249 30.89 .9143 30.49 .8333 28.36 .9051 28.23 .8839 29.96 .8923
BAGS 32.07 .9346 30.81 .9291 28.72 .8232 29.46 .9328 23.38 .8096 28.89 .8859
Deblur-GS 32.03 .9269 29.89 .9096 30.50 .8344 27.56 .9071 27.18 .8755 29.43 .8907
Ours 32.25 .9345 29.56 .9057 30.60 .8348 27.46 .9080 27.11 .8741 29.39 .8914

3.5. Visual Results for Ablation Study

In Figure 5, we present the visual results from the variants examined during the ablation studies. As shown in Figure 5, the
absence of the detail enhancement strategy leads to results that are less sharp (e.g., the circular line and text appear blurrier
compared to the outputs of our full model) or introduce artifacts, such as those visible around the ladder region. These
observations highlight the effectiveness of the detail enhancement strategy in our pipeline, which is achieved by supervising
rendered All-in-Focus images using Circle-of-Confusion (CoC) cues. Additionally, removing the regularization term for
the predicted in-focus mask leads to reconstructed scenes with more blurry regions and artifacts. Meanwhile, it can be
observed that removing the regularizer for the predicted in-focus mask, which encourages the in-focus to be binary, makes the
reconstructed scenes exhibit more blurry regions and artifacts. Figure 5 further demonstrates that, incorporating the loss term
Lmk that utilizes rendered CoC maps to supervise the predicted in-focus masks, also contributes to reducing artifacts, as shown
in ladder region.
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