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Methods Params.
(M)

w/o Noisy w/ Noisy

MAE MSE MAE MSE

DJFR [9] 0.08 2.10 45.78 3.84 60.66
DKN [7] 1.16 2.07 42.34 2.54 47.64
FDKN [7] 0.69 2.19 46.07 3.13 60.26
FDSR [5] 0.60 1.67 37.05 2.27 42.73
DCTNet [24] 0.48 2.10 36.12 2.63 38.34
SUFT [12] 22.01 1.13 28.12 2.13 33.84
SFG [22] 63.53 1.72 28.20 2.89 37.09
SGNet [15] 8.97 1.33 27.01 2.20 33.68
DORNet-T 0.46 1.36 35.47 1.81 37.54
DORNet 3.05 1.02 26.10 1.41 28.03

Table 1. Quantitative comparison of additional metrics on real-
world TOFDSR. MAE and MSE are calculated in centimeters.

1. Metrics
The root mean square error (RMSE), mean square error
(MSE), and mean absolute error (MAE) are defined as:

RMSE =

√
1

N
∑

|Dgt −Dhr|2,

MSE =
1

N
∑

|Dgt −Dhr|2,

MAE =
1

N
∑

|Dgt −Dhr|,

(1)

where Dhr and Dgt represent the predicted HR depth and
ground-truth depth, respectively. N is the pixel set of Dgt.

2. Additional Experiments
More Evaluation Metrics. Apart from the RMSE, we also
employ MSE and MAE as additional metrics to evaluate
our method on the real-world TOFDSR [18] dataset. Tab. 1
lists the quantitative comparison between our DORNet and
state-of-the-art approaches, including DJFR [9], DKN [7],
FDKN [7], FDSR [5], DCTNet [24], SUFT [12], SFG [22],
and SGNet [15]. It is evident that our DORNet achieves the
lowest MSE and MAE. For example, our method outper-
forms SGNet [15] by 0.31cm in MAE and 0.91cm in MSE
(w/o Noisy), while also reducing the parameters by 5.92M .
Overall, these experimental results further demonstrate that
our method can effectively recover accurate HR depth.
Comparison in Complex Lighting Scenes. Depth acqui-
sition in real-world scenes is often affected by varying il-
lumination conditions, leading to significant degradation.
To evaluate generalization capabilities in complex light-
ing environments, we first select ‘lights’ category from the
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Figure 1. Robustness of adding noise at varying levels before pre-
upsampling the LR depth on real-world RGB-D-D.

Methods DKN FDSR DCTNet SFG DORNet

RMSE 8.01 8.06 8.10 7.83 7.58

Table 2. Comparison of complex lighting on RGB-D-D-Lights.

Methods GT Depth HR Depth (Ours)

RGB-D-D 3.51 3.42
TOFDSR 4.26 4.21

Table 3. Ablation study on generating degradation representations
using GT depth instead of the predicted HR depth.

real-world RGB-D-D dataset as a new test set, RGB-D-D-
Lights, which includes 430 pairs of RGB-D. Then, we di-
rectly test it using the pre-trained weights on the real-world
RGB-D-D dataset that excludes the ‘lights’ category, with-
out any fine-tuning. Tab. 2 shows that our method demon-
strates outstanding generalization. For example, our DOR-
Net outperforms the second-best SFG [22] by 0.25cm in
RMSE on the RGB-D-D-Lights dataset.
Ablation Study of Degradation Representation Gener-
ation. Tab. 3 presents a comparison of degradation repre-
sentation generation employing GT depth and predicted HR
depth on the RGB-D-D and TOFDSR. We can observe that
the predicted HR depth contributes to better performance,
mainly attributed to its capability to facilitate joint optimiza-
tion of degradation regularization and degradation-oriented
fusion. Furthermore, the predicted HR depth is typically
dense, enabling accurate estimation of degradation repre-
sentations. In contrast, the GT depth captured from real-



RMSE DJF [8] DJFR [9] CUNet [4] DKN [7] FDKN [7] FDSR [5] DCTNet [24] SUFT [12] SFG [22] SGNet [15] DORNet-T DORNet
RGB-D-D 7.94 7.50 6.69 6.50 6.66 6.39 6.04 5.53 5.87 5.44 5.04 4.26
TOFDSR 11.45 10.92 9.76 7.42 8.13 6.31 7.52 5.08 5.46 5.11 5.07 4.61

Table 4. Quantitative comparison of adding noise before LR depth pre-upsampling on the real-world RGB-D-D and TOFDSR datasets.

Methods WorldView II GaoFen2

PSNR↑ SSIM↑ SAM [23]↓ ERGAS [1]↓ PSNR↑ SSIM↑ SAM [23]↓ ERGAS [1]↓

PanNet [20] 40.8176 0.9624 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577
SRPPNN [2] 41.4538 0.9679 0.0233 0.9899 47.1998 0.9877 0.0106 0.5586
GPPNN [16] 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361
MutInf [25] 41.6773 0.9705 0.0224 0.9519 47.3042 0.9892 0.0102 0.5481
PanFlow [19] 41.8584 0.9712 0.0224 0.9335 47.2533 0.9884 0.0103 0.5512
DORNet 42.0698 0.9723 0.0215 0.9090 47.8940 0.9890 0.0104 0.5172

Table 5. Quantitative comparison of Pan-Sharpening on the WorldView II and GaoFen2 datasets.

Methods CSPN [3] GuideNet [13] PENet [6] NLSPN [11] RigNet [17] GraphCSPN [10] PointDC [21] TPVD [18] DORNet
Params. (M) ↓ 17.4 73.5 131.5 25.8 65.2 26.4 25.1 31.2 3.05

RMSE ↓ 0.224 0.146 0.241 0.174 0.133 0.253 0.109 0.092 0.088
REL ↓ 0.042 0.030 0.043 0.029 0.025 0.052 0.021 0.014 0.014
δ1 ↑ 94.5 97.6 94.6 96.4 97.6 92.0 98.5 99.1 99.1
δ2 ↑ 95.3 98.9 95.3 97.9 99.1 96.9 99.2 99.6 99.6
δ3 ↑ 96.5 99.5 95.5 98.9 99.7 98.7 99.6 99.9 99.8

Table 6. Quantitative comparison of depth completion on the TOFDC dataset. The unit of RMSE is m.

world scenarios is often incomplete, resulting in ambiguous
degradation modeling. Therefore, we leverage the predicted
HR depth to model the degradation representations.
Results of Adding Noise Before Pre-Upsampling. To
more accurately simulate real-world scenarios, we conduct
additional noise robustness evaluations by adding Gaussian
noise and Gaussian blur to the original LR depth (without
pre-upsampling) as the new input.

Tab. 4 lists the results of adding fixed Gaussian noise
(mean 0, standard deviation 0.07) and Gaussian blur (stan-
dard deviation 0.36). It can be seen that our method
achieves superior noise robustness. For example, com-
pared to the second-best method, our DORNet decreases
the RMSE by 1.18cm on the real-world RGB-D-D dataset
and by 0.47cm on the real-world TOFDSR dataset.

Furthermore, Fig. 1 presents a comparison across differ-
ent noise levels, where the standard deviation of Gaussian
noise ranges from 0.04 to 0.16, and the standard deviation
of Gaussian blur is fixed at 0.36. Obviously, our method
achieves excellent performance across all levels. Compared
to SFG [22], DORNet reduces RMSE by 27.6% (standard
deviation 0.13) and 27.1% (standard deviation 0.16).

3. Generalization on Other Restoration Tasks
To further verify the generalizability of our method in other
multi-modal restoration tasks, we conduct extensive ex-
periments on pan-sharpening and depth completion tasks,

where our DORNet remains unchanged.

3.1. Pan-Sharpening
Tab. 5 demonstrates that our method achieves outstand-
ing performance on the pan-sharpening task. Specifi-
cally, we compared DORNet with previous state-of-the-
art pan-sharpening methods on the WorldView II and
GaoFen2 datasets, including PanNet [20], SRPPNN [2],
GPPNN [16], MutInf [25], and PanFlow [19]. Following
previous approaches [2, 19, 25], due to the ground-truth is
not available, we employ the Wald protocol [14] tool to gen-
erate synthetic data. Besides, PSNR, SSIM, SAM [23], and
ERGAS [1] are employed as evaluation metrics.

From Tab. 5, we can clearly see that DORNet achieves
the comparable performance across all four metrics on the
WorldView II and GaoFen2 datasets. For example, com-
pared to the second-best method, our DORNet increases
PSNR by 0.2114dB on the WorldView II dataset and by
0.5898dB on the GaoFen2 dataset.

3.2. Depth Completion
We compare DORNet with previous state-of-the-art depth
completion methods on the real-world TOFDC [18] dataset,
including CSPN [3], GuideNet [13], PENet [6], NLSPN
[11], RigNet [17], GraphCSPN [10], PointDC [21], and
TPVD [18]. In this experiment, we maintain the same set-
tings as TPVD [18]. REL, δj (j = 1, 2, 3), and RMSE (in
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Figure 2. Visual results on the real-world RGB-D-D dataset (w/o Noise).
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Figure 3. Visual results on the real-world RGB-D-D dataset (w/ Noise).

meters) are selected as evaluation metrics. Tab. 6 demon-
strates that our method achieves satisfactory performance
across all four metrics on the real-world TOFDC dataset.
For example, compared to the suboptimal TPVD [18], our
DORNet significantly decreases the parameters by 90%
while still achieving a 4% reduction in RMSE.

4. More Visualizations
Figs. 2-5 provide more visual comparison results on both
the real-world RGB-D-D [5] and TOFDSR [18] datasets.
We can observe that our DORNet recovers clearer depth.
For example, the person’s head recovered by our method in
Fig. 2 is more distinct than other approaches. Furthermore,

Fig. 3 presents the visual results on the real-world RGB-
D-D dataset with additional noise. It is evident that DOR-
Net successfully removes noise and restores more accurate
depth structure than other methods in noisy environments.

Fig. 6 further shows the visual results (×16) on the syn-
thetic NYU-v2 dataset, demonstrating that our DORNet
achieves superior performance in reconstructing precise ge-
ometric structure. For instance, the edges of the window
predicted by our method in Fig. 6 exhibit closer alignment
with the GT depth, showing fewer error.

In summary, these visual comparisons demonstrate that
our method effectively reconstructs sharp and accurate
structural details, achieving satisfactory DSR performance.
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Figure 4. Visual results (left) and error maps (right) on the real-world TOFDSR dataset (w/o Noise).
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Figure 5. Visual results (left) and error maps (right) on the real-world TOFDSR dataset (w/ Noise).
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Figure 6. Visual results (top) and error maps (bottom) on the synthetic NYU-v2 dataset (×16).
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