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A. Detailed Experimental Settings

A.1. Computational Resources

All experiments were conducted on NVIDIA GPUs, specif-

ically the RTX 4090 and A100. For the experiments re-

ported in Tables 1 and 2, all NCFM results were conducted

on a single NVIDIA 4090 GPU. The comparative exper-

iments between NCFM and DATM presented in Figure 3

were executed on a cluster of 8 A100 GPUs. The evalu-

ation of computational efficiency discussed in Section 5.2

was conducted on a single A100 GPU.

A.2. Hyper­parameter Settings

We report the comprehensive hyper-parameter settings of

our method in Table 7. The learning rate and weight de-

cay are carefully tuned for different datasets and IPC set-

tings to ensure optimal performance. We employ a fixed

batch size of 1024 for all training processes, except for the

ImageNet subset where we use a batch size of 512 when

the IPC is ≥ 10. The amplitude-phase ratio α in the Neu-

ral Characteristic Function Discrepancy (NCFD) measure is

set to 0.5, striking a balance between amplitude and phase

components for optimal performance. This setting ensures

equal contribution from both components, as demonstrated

in our ablation study in Figure 5. The number of sampled

frequency arguments t is consistently set to 4096 across all

experiments. We set the factor of ρ = 1 when IPC> 50 and

2 otherwise.

Table 7. Hyper-parameter settings for different datasets and IPC

configurations.

Dataset IPC Learning Rate Weight Decay

CIFAR-10

1 0.0001 0.001

10 0.001 0.001

50 0.005 0.001

500 5e-5 0.0001

1000 0.0001 0.0001

CIFAR-100

1 0.0001 0.001

10 0.001 0.001

50 0.005 0.001

100 1e-5 0.0001

Tiny ImageNet

1 0.0001 0.001

10 0.001 0.001

50 0.005 0.001

ImageNet subsets

1 0.0001 0.001

10 0.001 0.001

50 5e-5 0.0001

B. Proof of Theorem 2

Theorem 2 (Uniqueness for Characteristic Functions)

If two random variables X and Y have the same charac-

teristic function, ΦX(t) = ΦY (t) for all t, then X and Y
are identically distributed. In other words, a characteristic

function uniquely determines the distribution.

Proof 2 We aim to prove the Uniqueness for Characteris-

tic Functions(Theorem 2), which states that if two random

variables have identical characteristic functions, then they

are identically distributed. The characteristic function of a

random variable X is defined as:

ΦX(t) = E

[

ej⟨t,X⟩
]

Characteristic functions possess several important proper-

ties: they satisfy normalization where ΦX(0) = 1, exhibit

conjugate symmetry, are positive definite, and maintain uni-

form continuity across their domain.

Uniqueness via Fourier Inversion: Assume X and Y are

two random variables such that ΦX(t) = ΦY (t) for all

t ∈ R
d. By the Fourier Inversion Theorem, the probabil-

ity distribution of a random variable can be uniquely de-

termined by its characteristic function. Specifically, the in-

verse Fourier transform of the characteristic function yields

the probability density function (if it exists) or the proba-

bility measure. Therefore, since ΦX(t) = ΦY (t) for all t,

it follows that the probability distributions of X and Y are

identical. Formally:

FX(x) = FY (x) for all x ∈ R
d

This means that for any Borel set A ⊆ R
d:

P(X ∈ A) = P(Y ∈ A)

Since the characteristic functions of X and Y are identical

and the Fourier Inversion Theorem ensures that character-

istic functions uniquely determine probability distributions,

we conclude that X and Y are identically distributed. This

completes the proof of the Uniqueness for Characteristic

Functions.

C. Proof of Theorem 3

Theorem 3 (CFD as a Distance Metric) The CF discrep-

ancy CT (x, x̃), serves as a distance metric between x and

x̃ when the support of T resides in Euclidean space. It

satisfies the properties of non-negativity, symmetry, and the

triangle inequality.



Proof 3 We aim to prove that the Characteristic Function

Discrepancy (CFD) CT (x, x̃) satisfies the properties of a

valid distance metric: non-negativity, symmetry, and the tri-

angle inequality.

Non-negativity: By the definition of CFD as

CT (x, x̃) =
∫

t

√

Chf(t) dFT (t),

where Chf(t) = (Φx(t) − Φx̃(t))(Φx(t) − Φx̃(t)). Since

Chf(t) represents the squared magnitude of the difference

between the characteristic functions, it is always non-

negative:

Chf(t) = |Φx(t)− Φx̃(t)|2 ≥ 0.

Therefore, the integral of a non-negative function is also

non-negative:

CT (x, x̃) ≥ 0.

Moreover, CT (x, x̃) = 0 if and only if Chf(t) = 0 for all

t ∈ R
m. This implies that Φx(t) = Φx̃(t) for all t, and by

the Uniqueness Theorem of characteristic functions (Theo-

rem 2), it follows that x =d x̃.

Symmetry: The CFD is inherently symmetric with respect

to its arguments. Specifically, swapping x and x̃ does not

change the value of Chf(t):

Chf(t) = (Φx(t)− Φx̃(t))(Φx(t)− Φx̃(t))

= (Φx̃(t)− Φx(t))(Φx̃(t)− Φx(t)).

Thus,

CT (x, x̃) = CT (x̃,x).
Triangle Inequality: Consider three random variables x,

y, and z. We need to show that

CT (x, z) ≤ CT (x,y) + CT (y, z).

Using the Minkowski inequality for integrals, we have:

CT (x, z) =
∫

t

√

|Φx(t)− Φz(t)|2 dFT (t)

=

∫

t

|Φx(t)− Φz(t)| dFT (t)

=

∫

t

|Φx(t)− Φy(t) + Φy(t)− Φz(t)| dFT (t)

≤
∫

t

(|Φx(t)− Φy(t)|+ |Φy(t)− Φz(t)|) dFT (t)

= CT (x,y) + CT (y, z).

Thus, the triangle inequality holds.

Since CT (x, x̃) satisfies non-negativity, symmetry, and

the triangle inequality, it qualifies as a valid distance metric

between the random variables x and x̃. This completes the

proof of the CFD as a Distance Metric.

D. Results on Larger IPC Datasets

To comprehensively validate the scalability of NCFM, we

conducted experiments on datasets with larger IPC settings.

CIFAR-10/100. As shown in Table 8, NCFM demon-

strates superior performance across different IPC configura-

tions. Notably, several traditional methods, including MTT,

TESLA, and FTD, fail to match even the random baseline

in high IPC settings, while NCFM maintains robust per-

formance. For CIFAR-100 with 100 IPC, NCFM achieves

58.8%, outperforming DATM by 1.3% and even exceeding

the whole dataset performance. This efficient performance

demonstrates that NCFM can achieve lossless dataset dis-

tillation with significantly reduced memory requirements,

using about merely 2GB GPU memory.

Higher-resolution Datasets. Additionally, we examined

NCFM’s effectiveness on ImageNet subsets with larger IPC

settings, as presented in Table 9. Our method demon-

strates consistent improvements across all subsets. Most

remarkably, NCFM achieves lossless dataset distilla-

tion on multiple ImageNet subsets, even surpassing the

whole dataset performance in most cases. Compared

to the current SOTA method RDED, NCFM achieves sig-

nificant improvements of 7.7% and 3.0% on ImageWoof

and ImageNette respectively. For instance, on Image-

Fruit, our method outperforms the whole dataset training by

5.1%, demonstrating its exceptional capability in condens-

ing high-resolution datasets.

Table 8. Performance comparison (%) on CIFAR-10 and CIFAR-

100 with larger IPC settings. “↓ random” indicates performance

below random selection baseline.

Dataset CIFAR-10 CIFAR-100

IPC 500 1000 100

Random 73.2±0.3 78.4±0.2 42.8±0.3

MTT ↓ random ↓ random 49.2±0.4

TESLA ↓ random ↓ random 49.2±0.4

FTD ↓ random ↓ random 49.7±0.4

DATM 83.5±0.2 85.5±0.4 57.5±0.2

NCFM (Ours) 84.0±0.2 86.8±0.2 58.8±0.2

Whole Dataset 84.8±0.1 56.2±0.3

E. Continual Learning

In our study, we address the catastrophic forgetting problem

in continual learning by employing NCFM. We store train-

ing samples in memory greedily while maintaining class

balance. The model is retrained from scratch using only the

latest memory, making the quality of memory construction

crucial for continual learning performance. We conduct ex-

periments on the CIFAR-100 dataset using both 5-step and



Table 9. Performance comparison (%) on ImageNet subsets with IPC=50.

Dataset ImageNette ImageWoof ImageFruit ImageMeow ImageSquawk ImageYellow

IPC 50 50 50 50 50 50

RDED 83.8±0.2 61.5±0.3 - - - -

NCFM (Ours) 86.8±0.5 69.2±0.8 69.0±0.7 69.0±0.4 88.4±0.4 86.2±0.6

Whole Dataset 87.4±1.0 67.0±1.3 63.9±2.0 66.7±1.1 87.5±0.3 84.4±0.6
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Figure 8. Performance evaluation of continual learning methods

on CIFAR-100 with (a) 5-step and (b) 10-step settings.

10-step continual learning settings. In these settings, the

dataset is divided into 5 and 10 stages, respectively, with

each stage introducing new classes incrementally. Our ex-

periments are repeated 5 times with varying class orders to

ensure robustness. The memory budget is set to 20 im-

ages per class, consistent with previous studies. We com-

pare our method against Random selection, DSA and DM.

Our method synthesizes condensed images using the same

hyperparameters as the CIFAR-100 experiment with 10 im-

ages per class, ensuring a fair comparison.

As illustrated in Figure 8a and Figure 8b, our method

consistently outperforms the competitors in both settings,

demonstrating the superior quality of the condensed data

for continual learning. The final performance of our method

reaches 50.2% in the 5-step setting and 50.7% in the 10-step

setting, while DM achieves 33.8% and 34.0% respectively.

F. Further Results on Alternative Backbone

Networks

In this section, we extend our analysis to include results

on backbone networks beyond the previously used Con-

vNet. Specifically, we employed VGG-11, ResNet-18, and

AlexNet as backbone architectures to perform dataset dis-

tillation. These networks were chosen to represent a diverse

range of architectures, including shallow and deep models

with varying capacities and inductive biases. This allows us

to evaluate the generalizability and robustness of our distil-

lation approach across different network designs.

The results, summarized in Table 10, demonstrate the

effectiveness of our distillation method across all tested ar-

chitectures.

Table 10. Cross-architecture generalization performance (%) on

CIFAR-10, 50 IPC. The distilled data is trained on one architecture

(T) and then evaluated on another architecture (E).

Method T\E ConvNet AlexNet VGG-11 ResNet-18

DC ConvNet 53.9±0.5 28.8±0.7 38.8±1.1 20.9±1.0

CAFE ConvNet 55.5±0.4 34.0±0.6 40.6±0.8 25.3±0.9

DSA ConvNet 59.9±0.8 53.3±0.7 51.0±1.1 47.3±1.0

DM ConvNet 65.2±0.4 61.3±0.6 59.9±0.8 57.0±0.9

KIP ConvNet 56.9±0.4 53.2±1.6 53.2±0.5 47.6±0.8

MTT ConvNet 71.6±0.2 48.2±1.0 55.4±0.8 61.9±0.7

FTD ConvNet 73.8±0.2 53.8±0.9 58.4±1.6 65.7±0.3

DATM ConvNet 76.1±0.3 45.0±0.7 59.4±0.6 66.3±0.1

ATT ConvNet 74.5±0.4 60.0±0.9 61.7±0.9 66.3±1.1

IID ConvNet 69.0±0.2 67.3±0.2 67.3±0.3 68.3±0.2

DataDAM ConvNet 67.0±0.4 63.9±0.9 64.8±0.5 60.2±0.7

NCFM

ConvNet 78.3±0.3 75.5±0.3 75.5±0.3 73.8±0.2

AlexNet 71.0±0.7 69.5±0.2 72.5±0.5 67.9±0.2

VGG-11 69.4±0.6 69.6±0.3 71.7±0.4 69.8±0.2

ResNet-18 69.4±0.4 68.9±0.3 71.1±0.5 71.2±0.5

G. Cross-architecture Performance on ViTs

To further validate the architectural generalization capabil-

ities of our method, we conducted cross-architecture ex-

periments on ImageNette and ImageWoof datasets using

Vision Transformers (ViTs). We evaluated ViT on dis-

tilled images by ConvNets.As shown in Table 11, NCFM

demonstrates superior performance over the previous SOTA

method RDED, achieving remarkable accuracy gains of

17.2% and 11.9% on ImageWoof and ImageNette respec-

tively at 10 IPC. The consistent performance elevation

across different IPC settings underscores the robustness of

NCFM during distillation.

Table 11. Cross-architecture generalization performance (%) on

ImageNette and ImageWoof. The synthetic data is condensed us-

ing ConvNet, and evaluated on ViT.

Dataset ImageNette ImageWoof

IPC 10 50 10 50

RDED 59.6±1.6 75.8±2.0 38.6±1.0 55.2±1.1

NCFM (ours) 71.5±1.1 85.4±1.0 55.8±0.9 65.2±0.9



H. Correlation between CFD and MMD

To better understand NCFM, we examine the relationship

between the Characteristic Function Discrepancy (CFD)

and Maximum Mean Discrepancy (MMD).

CF as Well-Behaved Kernels in the MMD Metric. The

CF discrepancy term
∫

t

√

Chf(t; f)dFT (t) in our loss can

be viewed as a well-behaved kernel in MMD, specifically

as a Characteristic Kernel. Unlike MMD, which relies

on fixed kernels, NCFM adaptively learns FT (t), enabling

flexible kernel selection for optimal distribution alignment.

Furthermore, mixtures of Gaussian distributions within the

CF framework produce well-defined characteristic kernels.

When MMD employs a characteristic kernel of the form
∫

t
e−j⟨t,x−x̃⟩dFT (t), it aligns with the structure of CFD,

demonstrating that MMD is a special case of CFD when

only specific moments are matched. This insight also

explains the minimal memory overhead observed as IPC

grows, highlighting the efficiency of our approach.

Computational Advantage of CFD over MMD. In con-

trast to MMD, which requires quadratic time in the number

of samples for approximate computation, CFD operates in

linear time relative to the sampling number of frequency

arguments. This efficiency makes CFD substantially faster

and more scalable than MMD, offering a particular advan-

tage for large-scale datasets.

I. Phase & Amplitude Explanation

In this section, we conducted controlled experiments on

MNIST through deliberate misalignment strategies. As il-

lustrated in Figure 9, swapping amplitude spectra between

class-specific distributions while preserving phase informa-

tion (and vice versa) leads to significant semantic degra-

dation in synthesized digits. Specifically, amplitude mis-

match causes blurred digit contours, while phase misalign-

ment disrupts structural coherence. These observations em-

pirically validate our theoretical analysis in Section 4.2.1,

where we demonstrate that amplitude primarily governs di-

versity through distribution scaling, while phase alignment

encodes structural priors crucial for realism.

Initialization: 

random noise

CorrectlyMatch both amplitude and phase IncorrectlyMatch amplitude or phase

Misalignment of amplitude and phase

(A) Match amplitude of Class  1 & phase of  Class 2

(B) Match amplitude of  Class 2 & phase of  Class 1

Figure 9. Phase and amplitude alignment analysis on MNIST. We

conducted experiments on MNIST by combining amplitude from

one set (e.g., class 1 or class 2) with phase from another (e.g., class

2 or class 1).

J. Visualization Comparison between MMD-

based method and NCFM.

We provide additional visualization comparisons between

NCFM and MMD-based DM on the challenging Image-

Fruit dataset in Figure 10. Our method generates visually

distinct specimens with crisper fruit boundaries and better

color gradient preservation. The improved perceptual qual-

ity directly correlates with NCFM’s explicit optimization of

both magnitude and angular components in the character-

istic function space, enabling a more precise recovery of

high-frequency details.

DM (MMD-based) NCFM (CF-based)

Figure 10. Visualization comparison between DM and NCFM on

ImageFruit dataset with 10 IPC.


