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Overview

This material provides supplementary details to the main
paper, including the following sections:

• (A) Details of Proxy Token Phenomenon

• (B) Additional Experiments

– (B.1) Ablation Studies
– (B.2) Sanity Checks
– (B.3) Further Details on Benchmark Results

• (C) Additional Qualitative Analysis

– (C.1) Analyses of Feature Correlations
– (C.2) Comparison of Semantic Segmentation Results
– (C.3) Comparison of Attention Maps

• (D) Details of Experimental Settings

– (D.1) Datasets and Evaluation Protocols
– (D.2) Implementation Details

• (E) Related Work

– (E.1) Open-Vocabulary Dense Prediction
– (E.2) Transferring VLMs to Dense Prediction Tasks
– (E.3) Vision Foundation Models

A. Details of Proxy Token Phenomenon

This section primarily supplements the details of the proxy
token phenomenon observed in CLIP, offering deeper in-
sights into the rationale behind our proposed DeCLIP.

Observation. As stated in the main paper, ViT-based [14]
CLIP utilizes the [CLS] token to represent the overall fea-
tures of an image and performs image-text contrastive learn-
ing accordingly. Therefore, it is commonly believed that the
[CLS] token comprehensively attends to all image tokens
during the forward pass to obtain a “global view”, thereby
enhancing the image classification process.

Unexpectedly, the [CLS] token ceased to focus on the
primary object in the image starting from the 7th layer and
instead redirected its attention to several image tokens in
the background as shown in the first row of Figure 1. These
specific image tokens continued to receive significant atten-
tion from the [CLS] token in the following encoding layers.

A similar pattern was observed in the attention maps of
CLIP’s image tokens. As shown in the second row of Fig-
ure 1, we first randomly selected an image token located
on the primary object in the image as the anchor image to-
ken, and then visualized its attention maps across different
encoder layers. The experimental results show that the at-

tention of the anchor image token in layers 1-6 is primarily
distributed over the object it belongs to. However, after the
7th layer, which is when the [CLS] token shifted its atten-
tion to several specific image tokens in the background, the
anchor image token also began to focus on these specific
image tokens.

Moreover, as illustrated in the third row of Figure 1,
when the position of the anchor image token is shifted, the
new anchor image token continues to exhibit high attention
towards these specific tokens. This demonstrates that this
phenomenon is not limited to a particular image token but
is instead widespread across the image tokens in CLIP.

Analysis. One possible explanation for this phenomenon
could be the redundancy present in image data. Images in-
herently carry a higher information load than text, encom-
passing substantial background details that are unrelated to
image classification tasks. These specific background to-
kens may serve as “proxies” for the [CLS] token. This sug-
gests that these tokens aggregate essential information from
other image tokens, enabling the [CLS] token to form an
approximate “global view” by summarizing content from
them, thereby facilitating image classification. This per-
spective is also supported by recent studies [11, 48].

In over a decade of CNN [22, 36] development, no stud-
ies have reported similar phenomena. Therefore, we spec-
ulate that the second reason for this phenomenon may stem
from the ViT architecture [14]. The classic ResNet [22] ar-
chitecture consists of four stages, in which the feature res-
olution is halved and the number of channels is doubled at
each stage. This is a process of learning sparse features,
where redundant image details are progressively discarded,
and feature semantics are continually enhanced. However,
CLIP with a ViT architecture lacks this process. After patch
embedding, the size and the number of channels in the fea-
ture map remain unchanged. As a result, the model spon-
taneously generates “proxy” tokens to mimic the process of
learning sparse features, akin to CNN.

Effects. As discussed above, the proxy token phenomenon
allows ViT CLIP to learn sparse features, which facilitate
the extraction of key information from images, enhance
image-text contrastive learning and reduce the optimization
burden.

However, this phenomenon causes the image tokens in
CLIP to indiscriminately focus on the proxy tokens in
the background, rather than on the regions that are spa-
tially or semantically related to them. Consequently, this
leads to CLIP’s dense features to lack local discriminability
and spatial consistency, affecting its performance in open-



Layer1 Layer3 Layer6 Layer7 Layer8 Layer9 Layer10 Layer11 Layer12

CLIP
CLS
Token

CLIP
Image
Token1

CLIP
Image
Token2

Figure 1. Visualization of the “proxy” token phenomenon in the attention maps of the CLIP visual encoder. Specifically, the input
image resolution is 224*224. We extract the attention weights from each attention block of CLIP and average them across the multi-
head dimension (after Softmax), yielding attention maps M ∈ R197×197. M[0, 1:] ∈ R1×196 represents the attention map from the [CLS]
token to other image tokens (first row). M[1:197, 1:197] ∈ R196×196 represents the attention map between each image token and all image
tokens. We randomly select specific image tokens’ attention map (the second and third rows, indicated by the red dots) for visualization,
each with dimensions of 1*196. We reshape them to 1*14*14 and apply bilinear upsampling to 1*224*224 for better visualization.

Table 1. Ablation study on types of XContext.

XContext
Region Classification (mAcc) Semantic Segmentation (mIoU)

COCO (Thing) COCO (Stuff) PASCAL Context59 ADE

Q 77.2 52.5 38.7 21.8
K 76.5 51.0 39.4 21.6

Q+K 77.3 53.8 39.2 21.9

vocabulary dense prediction tasks.

B. Additional Experiments
B.1. Ablation Studies
In this section, we conduct a thorough ablation study on
DeCLIP, encompassing the examination of various Xcontext
implementations, the variation in the number of fine-tuning
layers, the impact of the hyperparameter λ in the loss func-
tion, and the influence of the distillation baseline.

Except for the region classification experiment in Ta-
ble 1, which was conducted at a resolution of 1024×1024,
the region classification performance in all other experi-
ments was assessed at a resolution of 560×560. Addition-
ally, the semantic segmentation performance of all ablation
experiments was assessed at a resolution of 336×336.
Types of Context. Since there are various implementations
of Xcontext, including Q, K, and Q + K, we performed
an ablation study on their performance in dense prediction
tasks, including region classification (mAcc) and semantic
segmentation (mIoU), as shown in Table 1. Specifically, im-
plementing Xcontext based on K means that the last attention
block of CLIP leverages K to compute the attention weight.
Additionally, implementing Xcontext based on Q + K in-

Table 2. Ablation study on number of fine-tuning layers.

Fine-tuning
Layers

Region Classification (mAcc) Semantic Segmentation (mIoU)

COCO (Thing) COCO (Stuff) PASCAL Context59 ADE

3 62.7 47.0 38.0 21.8
6 67.1 47.8 39.0 22.3
9 70.7 50.5 39.0 22.1
12 72.2 51.3 38.7 21.8

volves first computing the attention weights of Q and K
separately, and then summing them. The experimental re-
sults indicate that the performance differences among the
three implementations are minimal, while the Q and K ex-
hibits slightly better performance in dense prediction tasks.

Number of fine-tuning layers. We performed an abla-
tion study to examine the relationship between the number
of fine-tuning attention blocks and dense prediction perfor-
mance. The experiment was conducted on the ViT-B ver-
sion of CLIP, which comprises a total of 12 attention blocks.
we experiment with updating the last 3, 6, 9, and 12 at-
tention blocks. As shown in Table 2, we observed that as
the number of fine-tuning layers increased, the performance
of region classification continuously improved, reaching its
peak at 12 layers. However, the performance of semantic
segmentation peaked at 6 layers, and as the number of lay-
ers increased further, the performance slightly declined. In
practice, to balance the performance of both tasks, we chose
to fine-tune all attention blocks in the implementation of
DeCLIP.

Sensitivity Analysis of λ. In DeCLIP, we employ a hy-
perparameter λ to balance the weight between Lcontent and
Lcontext. We performed an ablation study to examine the



Table 3. Ablation Study on EVA-CLIP for open-vocabulary semantic segmentation

Method Backbone Training Set ADE847 Context459 ADE150 Context59 VOC20 VOC21

CAT-Seg+CLIP [42] ViT-B/16 COCO-Stuff 12.0 19.0 31.8 57.5 94.6 77.3
CAT-Seg+CLIP [42] ViT-L/14 COCO-Stuff 16.0 23.8 37.9 63.3 97.0 82.5

CAT-Seg+EVA-CLIP [49] ViT-B/16 COCO-Stuff 11.9 17.6 30.4 52.3 94.2 74.2
CAT-Seg+EVA-CLIP [49] ViT-L/14 COCO-Stuff 14.2 21.3 34.8 56.2 95.8 80.1

CAT-Seg+DeCLIP ViT-B/16 COCO-Stuff 15.3 21.4 36.3 60.6 96.6 81.3
CAT-Seg+DeCLIP ViT-L/14 COCO-Stuff 17.6 25.9 40.7 63.9 97.7 83.9

Table 4. Ablation Study on EVA-CLIP for open-vocabulary semantic segmentation based on VLM features.

Method
With a background category Without background category

Avg
VOC21 Context60 COCO-Obj VOC20 CityScape Context59 ADE COCO-Stf

CLIP [42] 18.8 9.9 8.1 49.4 6.5 11.1 3.1 5.7 14.1
EVA-CLIP [49] 23.4 12.8 15.3 55.9 12.8 13.9 7.7 9.7 18.9
ClearCLIP [32] 51.8 32.6 33.0 80.9 30.0 35.9 16.7 23.9 38.1
EVA-ClearCLIP 47.0 29.7 30.2 78.3 26.3 29.4 16.7 20.4 34.7
DeCLIP 59.7 35.3 36.4 85.0 32.8 39.2 21.9 25.3 41.9

Table 5. Sentitivity Analysis of hyperparameter λ.

λ
Region Classification (mAcc) Semantic Segmentation (mIoU)

COCO (Thing) COCO (Stuff) PASCAL Context59 ADE

0.1 72.4 50.6 37.9 21.3
0.2 72.4 51.0 38.4 21.7

0.25 72.2 51.3 38.7 21.8
0.3 71.9 51.4 38.7 21.7

relationship between the hyperparameter λ and dense pre-
diction performance. The experimental results demonstrate
that our method exhibits strong robustness, and the dense
prediction performance of DeCLIP does not fluctuate dras-
tically with changes in λ. Furthermore, the results indicate
that λ = 0.25 strikes a good balance between region classi-
fication capability and image segmentation performance.

Distillation Baseline. In our experiments, we used EVA-
CLIP [49] as the baseline for DeCLIP, as we found that
it demonstrated improved performance after distillation, as
shown in Table 6. This can be attributed to two main factors:
(1) EVA-CLIP uses the EVA02 [17] model for initializing
the visual encoder. EVA02 was trained using Masked Im-
age Modeling (MIM), thereby enhancing its compatibility
with Vision Foundation Models (VFMs). (2) EVA-CLIP’s
[CLS] token exhibits superior zero-shot classification capa-
bility compared to OpenAI’s model [55]. In Sec. B.2, we
conducted comprehensive sanity checks to verify whether
the performance improvement of DeCLIP in dense predic-
tion tasks is due to the use of EVA-CLIP.

B.2. Sanity Checks
To eliminate potential biases that EVA-CLIP [49] might in-
troduce, we conducted additional sanity check experiments.

Table 6. Comparison of different distillation baselines.

Source
Region Classification (mAcc) Semantic Segmentation (mIoU)

COCO (Thing) COCO (Stuff) PASCAL Context59 ADE

OpenAI 65.0 38.8 36.2 18.6
EVA-CLIP 72.2 51.3 38.7 21.8

Specifically, we first apply vanilla EVA-CLIP as the
backbone network in the CAT-Seg [9] model and com-
pare its performance with DeCLIP in the Open-Vocabulary
Semantic segmentation (OVSS) task, as shown in Ta-
ble 3. Furthermore, we re-implemented ClearCLIP [32]
based on EVA-CLIP and named it EVA-ClearCLIP. Then,
we compared the performance between EVA-CLIP, EVA-
ClearCLIP, and DeCLIP in the OVSS based on VLM fea-
tures task, as shown in Table 4. We did not conduct further
open-vocabulary detection experiments because the base-
line detectors, OV-DQUO [52] and F-ViT [55], have already
used EVA-CLIP as the backbone network in their respective
studies.

OVSS. As shown in Table 3, experimental results demon-
strate that directly applying EVA-CLIP to CAT-Seg per-
forms worse than OpenAI’s model. In contrast, DeCLIP
significantly improves CAT-Seg’s performance across all
semantic segmentation benchmarks.

OVSS based on VLM feautures. As shown in Ta-
ble 4, experimental results indicate that EVA-CLIP per-
forms slightly better than CLIP in this task, while EVA-
ClearCLIP underperforms in comparison to ClearCLIP.
However, both EVA-CLIP and EVA-ClearCLIP fall sig-
nificantly short of DeCLIP’s average performance of 41.9
across the eight benchmarks.
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Figure 2. Qualitative comparison of feature correlations between DeCLIP and existing pre-fine-tuning approaches [55, 68]. Specif-
ically, the input image resolution is 336*336. We extract the output features from each attention block of CLIP, where each feature
F ∈ R441×D . Then, we compute the feature correlations FC ∈ R441×441 between the image tokens within F using cosine similarity.
We randomly select a specific image token’s feature correlation (indicated by the red dots) and upsample it to a resolution of 336*336 for
visualization.

Based on the results of the aforementioned experiments,
we conclude that the performance improvement of DeCLIP
is not attributable to the introduction of EVA-CLIP, but is
instead due to the superiority of the decoupled feature en-
hancement strategy.

B.3. Further Details on Benchmark Results
We present detailed results for the OV-COCO, OV-LVIS,
and cross-dataset benchmarks to provide a comprehensive
comparison of the open-vocabulary object detection task,
as shown in Tables 7 and 8.

C. Additional Qualitative Analysis

This section further presents a qualitative experimental
analysis of our proposed DeCLIP method in comparison
to existing methods, including feature correlation analysis,
semantic segmentation results, and attention map compar-
isons, thereby providing a more comprehensive demonstra-
tion of the superiority of DeCLIP’s decoupled feature en-
hancement strategy.

C.1. Analyses of Feature Correlations
We have analyzed CLIP and found that its limitation in
open-vocabulary dense prediction arises from image tokens
failing to aggregate information from spatially or seman-
tically related regions. Figure 2 presents a comparison of
feature correlations among CLIP [42], DeCLIP, and exist-

ing pre-finetuning methods [55, 68] at each vision encoder
layer.

This experiment provide insight into how the output fea-
tures of each layer in CLIP’s visual encoder changed after
fine-tuning. In this experiment, we randomly select an im-
age token from the primary object within the image (i.e.,
the bird) as the anchor and visualize the cosine similarity
between the anchor and the other image tokens. The ex-
perimental results indicate that the impact of various fine-
tuning methods on the correlation of CLIP’s output features
becomes noticeable starting from the 6th encoder layer.

CLIP vs. existing pre-fine-tuning methods. Rows 1, 2,
and 3 of Figure 2 exhibit the changes in feature correla-
tions of CLIP after region-level fine-tuning [55, 68]. The
experimental results indicate that region-level fine-tuning
enhances the feature correlations of the anchor image token
to start converging towards the object it belongs to (rows
2 and 3), rather than being randomly scattered across the
image (row 1).

This change is highly effective for open-vocabulary ob-
ject detection tasks. As relevant features become more
focused, region features exhibit enhanced discriminative
power in the visual-language space when extracting the ob-
ject’s region features from the image for recognition. How-
ever, these methods remain constrained in image segmenta-
tion tasks that demand pixel-level precision. As shown in
the feature correlation results in rows 2 and 3 of Figure 2,
most of the pixels surrounding the bird will be misclassified



Table 7. Detailed comparison on OV-COCO and OV-LVIS benchmarks. Caption supervision indicates that the method learns from extra
image-text pairs, while CLIP supervision refers to transferring knowledge from CLIP. †: Detection Transformer based detectors.

(a) OV-COCO benchmark [35]

Method Supervision Backbone APNovel
50 APBase

50 AP50

ViLD [19] CLIP RN50 27.6 59.5 51.2
Detic [72] Caption RN50 27.8 51.1 45.0
OV-DETR† [64] CLIP RN50 29.4 61.0 52.7
ProxyDet [23] Caption RN50 30.4 52.6 46.8
RegionCLIP [68] Caption RN50 31.4 57.1 50.4
RTGen [6] Caption RN50 33.6 51.7 46.9
BARON-KD [54] CLIP RN50 34.0 60.4 53.5
CLIM [56] CLIP RN50 36.9 - -
SAS-Det [67] CLIP RN50 37.4 58.5 53.0
RegionCLIP [68] Captions RN50x4 39.3 61.6 55.7
CORA† [57] CLIP RN50x4 41.7 44.5 43.8
OV-DQUO† [52] CLIP RN50x4 45.6 - -

RO-ViT [28] CLIP ViT-L/16 33.0 - 47.7
CFM-ViT [27] CLIP ViT-L/16 34.1 - 46.0
F-ViT [55] CLIP ViT-B/16 37.6 54.9 50.4
BIND [66] CLIP ViT-L/16 41.5 58.3 54.8
F-ViT [55] CLIP ViT-L/14 44.3 64.1 59.0

F-ViT+DeCLIP CLIP ViT-B/16 41.1 57.8 53.5
F-ViT+DeCLIP CLIP ViT-L/14 46.2 65.2 60.3
OV-DQUO+DeCLIP† CLIP ViT-B/16 46.1 56.3 53.6
OV-DQUO+DeCLIP† CLIP ViT-L/14 48.3 60.0 56.9

(b) OV-LVIS benchmark [20]

Method Supervision Backbone mAPr mAPc mAPf mAP

ViLD [19] CLIP RN50 16.6 24.6 30.3 25.5
OV-DETR† [64] CLIP RN50 17.4 25.0 32.5 26.6
BARON-KD [54] CLIP RN50 22.6 27.6 29.8 27.6
RegionCLIP [68] Caption RN50x4 22.0 32.1 36.9 32.3
CORA+† [57] Caption RN50x4 28.1 - - -
SAS-Det [67] CLIP RN50x4 29.1 32.4 36.8 33.5
CLIM [56] CLIP RN50x64 32.3 - - -
F-VLM [31] CLIP RN50x64 32.8 - - 34.9

F-ViT [55] CLIP ViT-B/16 25.3 21.8 29.1 25.2
RTGen [6] Caption Swin-B 30.2 39.9 41.3 38.8
BIND [66] CLIP ViT-L/16 32.5 33.4 35.3 33.2
Detic [72] Caption Swin-B 33.8 - - 47.0
CFM-ViT [27] CLIP ViT-L/14 33.9 - - 36.6
RO-ViT [28] CLIP ViT-H/16 34.1 - - 35.1
F-ViT [55] CLIP ViT-L/14 34.9 34.6 35.6 35.1
ProxyDet [23] Caption Swin-B 36.7 - - 41.5
CoDet [38] Caption ViT-L/14 37.0 46.3 46.3 44.7
OV-DQUO† [52] CLIP ViT-L/14 39.3 - - -

F-ViT+DeCLIP CLIP ViT-B/16 26.8 22.4 29.8 26.0
F-ViT+DeCLIP CLIP ViT-L/14 37.2 35.2 36.5 36.0
OV-DQUO+DeCLIP† CLIP ViT-B/16 31.0 - - 27.7
OV-DQUO+DeCLIP† CLIP ViT-L/14 41.5 - - 34.6

Table 8. Detailed comparison of transferring LVIS-trained detec-
tors to the COCO and Objects365 datasets.

Method
COCO [35] Objects365 [47]

AP AP50 AP75 AP AP50 AP75 APs APm APl

Supervised Baseline [19] 46.5 67.6 50.9 25.6 38.6 28.0 - - -

ViLD [19] 36.6 55.6 39.6 11.8 18.0 12.6 - - -
DetPro [15] 34.9 53.8 37.4 12.1 18.8 12.9 4.5 11.5 18.6
BARON [54] 36.2 55.7 39.1 13.6 21.0 14.5 5.0 13.1 20.7
F-VLM [31] 37.9 59.6 41.2 16.2 25.3 17.5 - - -
CoDet [38] 39.1 57.0 42.3 14.2 20.5 15.3 - - -
RO-ViT [29] - - - 17.7 27.4 19.1 - - -
CLIPSelf [55] 40.5 63.8 44.3 19.5 31.3 20.7 9.7 23.2 35.5

DeCLIP 41.0 64.6 44.8 20.0 32.2 21.2 10.0 24.4 36.7

as “bird” rather than to be “background”.

CLIP vs. DeCLIP. Rows 1 and 4 of Figure 2 exhibit the
changes in feature correlations of CLIP after decoupled fea-
ture enhancement strategy. The experimental results indi-
cate that DeCLIP enhances the feature correlations of the
anchor image token to closely align with the object it rep-
resents, in clear contrast with other existing pre-fine-tuning
approaches (row 2 and 3). This experiment reveals why De-
CLIP is better suited for image segmentation tasks than ex-
isting methods. Additionally, the experiment demonstrates
DeCLIP’s also superiority over current pre-finetuning ap-
proaches in region classification tasks. As shown in the fea-
ture correlation map of DeCLIP’s 12th layer, the image re-
gions corresponding to the same object as the anchor image
token display a strong red color, indicating a very high fea-
ture correlation strength in these regions, thereby enhanc-
ing the discriminative power of region features within the
visual-language space.

C.2. Comparison of Semantic Segmentation Results

Figure 3 shows a qualitative comparison of MaskCLIP [70],
SCLIP [50], ClearCLIP [32], and our proposed De-
CLIP across the Context59 [39], COCO-Stuff [3],
Cityscapes [10], and ADE20K [69] datasets. We observe
that, compared to other methods, DeCLIP consistently pro-
duces higher-quality and more precise segmentation maps.

Specifically, benefiting from content feature distillation,
which improves the discriminability of local features, De-
CLIP successfully recognizes trees, people, and curbs in
the images, as shown in columns 1, 5, and 6 of Figure 3,
whereas other models fail. Furthermore, our observation
indicates that the distillation of context features improves
the spatial consistency of DeCLIP’s local features, leading
to smoother and less noisy segmentation results compared
to other models, as demonstrated in columns 2, 3, 4, and 7
of Figure 3. This demonstrates the superiority of our decou-
pled feature enhancement strategy.

C.3. Comparison of Attention Maps

Figure 4 offers a detailed comparison of attention maps be-
tween CLIP and our proposed DeCLIP approach. As De-
CLIP involves unsupervised fine-tuning, we conducted tests
using diverse cross-domain image styles to thoroughly as-
sess its generalization capability. Specifically, we utilized
generative models [46] to generate test images in various
styles such as ink painting, watercolor, sketch, animation,
and oil painting, which are depicted on the left side of Fig-
ure 4. These cross-domain test images were not part of the
fine-tuning dataset for DeCLIP (i.e., COCO2017 [35]).

In addition, we performed a detailed comparison of at-
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Figure 3. Qualitative comparison of the open-vocabulary semantic segmentation results between DeCLIP and existing approaches [32, 50,
70].

tention maps between CLIP and DeCLIP on in-domain im-
ages. Specifically, we selected a subset of images from the
Object365 [47] validation set for testing, with the results
shown on the right-hand side of Figure 4. During the test-
ing phase, we first resized the images to 336×336 pixels
and then fed them into the model to extract features. Subse-
quently, we randomly selected an anchor image token and
visualized its attention map in the 12th attention block, as
indicated by the red dots on the test images in Figure 4.
For details on the calculation process of the attention map,
please refer to Figure 1.

As depicted in Figure 4 , due to the proxy token phe-
nomenon, the heatmap generated by the anchor image to-
ken in vanilla CLIP frequently lacks semantic consistency
with its corresponding object. In contrast, despite being
fine-tuned only on the natural scene dataset COCO, De-
CLIP demonstrates significant semantic relevance for both
in-domain and cross-domain test images. Moreover, bene-
fiting from context feature distillation, DeCLIP’s semantic
correlations demonstrate remarkably fine granularity, effec-
tively outlining the boundaries of each object semantically
associated with the anchor image token.

D. Details of Experimental Settings
In this section, we present further details and configurations
utilized in our experiments.

D.1. Datasets and Evaluation Protocols

Open-Vocabulary Detection. Following established set-
tings [55, 57, 65], we evaluated our model on the OV-COCO
[35], OV-LVIS [20], COCO, and Object365 [47] datasets.
The OV-COCO dataset includes 48 base categories and 17
novel categories. The training set contains only base cat-
egories, totaling 107,761 images, while the validation set
comprises 4,836 images featuring both base and novel cat-
egories. We report the mean Average Precision (mAP) at
an Intersection over Union (IoU) threshold of 0.5 for novel
categories. The OV-LVIS dataset consists of 1,203 cate-
gories. Its training set includes only 461 common and 405
frequent categories, totaling 100,170 images. The valida-
tion set contains 19,809 images with common, frequent, and
rare categories. We report the mAP for rare categories at
IoU thresholds ranging from 0.5 to 0.95. Additionally, we
provide cross-dataset evaluation results on the COCO and
Object365 validation sets for models trained on OV-LVIS
to assess generalization across domains.
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Figure 4. Comprehensive comparison of attention maps between CLIP and DeCLIP. The left side presents images of various styles
generated by generative models [46]. The images presented on the right-hand side comes from a subset of images in the Object365 [47]
validation set. Anchor image token marked in red.



Open-Vocabulary Semantic Segmentation. In line with
prior studies [9], we trained our model on the COCO-Stuff
dataset [3], which comprises 118,000 images with dense
annotations across 171 categories. We then evaluated the
model on the ADE20K [69], PASCAL VOC [16], and
PASCAL-Context [39] datasets. ADE20K [69] includes
20,000 training images and 2,000 validation images, with
two category sets: A-150 (150 common categories) and A-
847 (847 categories) [13]. PASCAL-Context consists of
5,000 training and validation images, with category sets PC-
59 (59 categories) and PC-459 (459 categories). The PAS-
CAL VOC dataset includes 1,500 images for training and
validation, featuring category sets PAS-20 (20 categories)
and PAS-21 (20 object categories plus one background
class). We used mean Intersection over Union (mIoU) as
the evaluation metric in all experiments.

Open-Vocabulary Semantic Segmentation Based on
VLM Features. To further evaluate DeCLIP, we assessed
it on six commonly used semantic segmentation bench-
marks: PASCAL VOC 2012 [16], PASCAL Context [39],
Cityscapes [10], ADE20K [69], COCO-Stuff [35], and
COCO-Object [3]. For datasets including a background cat-
egory, we refer to them as VOC21 and Context60; those
without a background category are termed VOC20 and Con-
text59. Consistent with previous experiments, we used
mIoU as the evaluation metric across these benchmarks.

D.2. Implementation Details

DeCLIP. DeCLIP was trained on training set images from
the COCO2017 [35] dataset using 8 GPUs, each with a
batch size of 2, for 6 epochs (about 44 min/epoch on 8×4090
GPUs). The AdamW [37] optimizer with a learning rate of
1e−5 and a weight decay of 0.1 was employed during the
training process.

During the content feature distillation process, the im-
age is divided into k blocks, where k = m × n, and m
and n are randomly sampled from the range [1, 6]. Af-
ter cropping k image blocks from the original image, the
patches are resized to a resolution of 224×224 and subse-
quently fed into the teacher model to generate the corre-
sponding [CLS] tokens for content feature distillation. Un-
less stated otherwise, our experiments were conducted us-
ing EVA-CLIP [49].

In the process of context feature distillation, given the
distinct image preprocessing methods with varying means
and standard deviations used by CLIP and VFM during
pretraining, we incorporated the corresponding parameters
during the distillation process. Additionally, to address the
potential variation in patch sizes between CLIP and VFM
(e.g., CLIP uses a 16-patch size while DINOV2 uses a 14-
patch size), we adjusted the image resolutions to maintain
consistency in the number of image tokens. For example,
we set the resolution of CLIP to 1024 and that of DINOV2

to 896, ensuring both models possess 4096 image tokens.
The weight λ for context feature distillation is established
at 0.25. Unless specified otherwise, our default VFM is DI-
NOv2 [41].

Open-vocabulary detection. In the open-vocabulary de-
tection experiment, DeCLIP was evaluated in two model
baselines: F-ViT [55] and OV-DQUO [52]. These base-
lines are constructed based on transfer learning principles,
utilizing the image encoder of CLIP for feature extrac-
tion while maintaining the backbone network frozen dur-
ing training and only training the task-specific components.
The two baseline models utilize distinct detector architec-
tures: F-ViT employs the traditional Faster R-CNN [45] ar-
chitecture, whereas OV-DQUO utilizes the modern Detec-
tion Transformer [4] architecture. This enables a thorough
assessment of the efficacy of our proposed approach.

We maintained the default training strategies and hyper-
parameter configurations from the original studies for both
baseline models to uphold experiment fairness. The only
modification was to the temperature parameter when inte-
grating DeCLIP for object detection. For F-ViT, the tem-
perature was set to 45 for the OV-COCO benchmark and
90 for the OV-LVIS benchmark. In OV-DQUO, the temper-
ature was set to 50 for both the OV-COCO and OV-LVIS
benchmarks.

Open-Vocabulary Semantic Segmentation. In the open-
vocabulary semantic segmentation experiments, we applied
DeCLIP to the CAT-Seg [9] baseline. For all experiments,
we adhered to the default training and inference settings of
vanilla CAT-Seg, replacing only the image encoder with De-
CLIP.

Open-Vocabulary Semantic Segmentation Based on
VLM Features. During inference, we resized the shorter
side of images to 448 pixels and employed a sliding win-
dow strategy with a window size of 336×336 and a stride of
112×112. For all datasets, we generate textual descriptions
by utilizing the standard ImageNet prompts [42] in conjunc-
tion with their respective class names. No post-processing
steps were applied.

E. Related Work

E.1. Open-Vocabulary Dense Prediction
Open-vocabulary dense prediction aims to detect and seg-
ment visual concepts from novel categories using tex-
tual descriptions, extending beyond the base categories on
which the model was trained. According to recent sur-
veys [73], methods in this field can be broadly classified
into four categories: knowledge distillation-based [21, 53,
54, 64], pseudo-labeling [52, 63, 67, 68, 72], region-aware
training [18, 27, 29, 57, 59], and transfer learning-based ap-
proaches [12, 26, 31, 33, 34, 52, 55].



Knowledge distillation-based methods, such as ViLD
[19], BARON [54], and OADP [53], propose various distil-
lation frameworks to transfer the generalized classification
knowledge of VLMs [42, 49] into dense prediction mod-
els. Pseudo-labeling methods like RegionCLIP [68] and
SAS-Det [67] enhance region-text alignment by generat-
ing pseudo-labels for image-text pairs using VLMs or self-
training techniques. Region-Aware Training methods, ex-
emplified by CORA [57], improve the object classification
accuracy of CLIP by learning region prompts.

Transfer Learning-Based methods [9, 12, 24–26, 34, 52,
55, 60, 61] utilize the image encoder of VLM as a fea-
ture extractor and exclusively train lightweight task-specific
components. These methods have become mainstream in
open-vocabulary dense prediction due to their broad ap-
plicability. While leveraging VLMs as feature extractors
offers significant advantages due to their comprehensive
pre-training, directly applying these image-level models to
dense prediction tasks often results in domain shift issues
[55, 57], thereby limiting their performance. In this pa-
per, we integrate DeCLIP into transfer learning-based ob-
ject detection baselines F-ViT and OV-DQUO, as well as
the image segmentation baseline CATSeg, to enhance their
performance in open-vocabulary dense prediction tasks.

E.2. Transferring VLMs to Dense Prediction Tasks
As VLMs [42, 49] were initially trained on image-text pairs,
the direct application of these image-level models to dense
prediction tasks, which require region-level or pixel-level
semantic understanding, results in significant performance
degradation. Several studies have attempted to address this
limitation through fine-tuning strategies. These approaches
can be broadly categorized into joint fine-tuning and pre-
fine-tuning approaches.

Joint fine-tuning methods fine-tune CLIP while training
task-specific components [9, 24, 25, 33, 34, 58, 60]. For in-
stance, CAT-Seg [9] proposes an attention fine-tuning strat-
egy based on ViT CLIP, which generalizes well to unseen
categories. MAFT [24] leverages attention bias to fine-tune
CLIP for mask classification.

Pre-fine-tuning methods directly fine-tune CLIP using
cost-efficient techniques [40, 55–57, 68]. For instance,
CLIM [56] employs a mosaic augmentation technique to
stitch multiple images into a single image, enabling each
sub-image to serve as a pseudo-region for region-text con-
trastive learning. CLIPSelf [55] enhances CLIP’s region
classification accuracy by maximizing cosine similarity be-
tween its region representations and the corresponding im-
age crop representations.

Despite the promising results of the two categories of
fine-tuned methods, they continue to exhibit certain limita-
tions. In contrast to these studies, we conduct an analysis
of CLIP and identify that its limitation in open-vocabulary

dense prediction stems from the inability of image tokens to
effectively aggregate information from spatially or seman-
tically related regions. To address this, we propose inte-
grating VFMs into the pre-fine-tuning process and decou-
pling features for distillation, thereby improving the dis-
criminability and spatial consistency of CLIP’s local fea-
tures.

E.3. Vision Foundation Models
Vision foundation models, including the Self-Supervised
Representation Learning (SSL) series [1, 2, 5, 7, 41, 71]
and the SAM series [30, 44], which are trained on large-
scale segmentation data, demonstrate the ability to extract
features that exhibit strong spatial consistency.

SSL is a key area in computer vision that focuses on
learning meaningful visual features without manual anno-
tations [1, 2, 5, 7, 41, 71]. Vision models trained through
SSL can extract image features with excellent spatial under-
standing. For example, the DINO series [5, 41] can identify
similar semantic regions across different images and seg-
ment main objects without explicit supervision. Another
prominent vision foundation model is SAM [30, 44], which
demonstrates similarly outstanding spatial understanding.
Trained on the extensive SA-1B segmentation dataset, SAM
can accurately capture and segment objects regions in im-
ages based on prompts.

Recently, some studies have explored the combination of
CLIP with VFM, such as SAM-CLIP [51], OV-SAM [62],
and FrozenSeg [8], with the goal of integrating SAM’s pow-
erful image segmentation capabilities and CLIP’s zero-shot
semantic perception capabilities. AM-RADIO [43] trains
a unified vision model through multi-teacher distillation
from multiple foundational vision models such as CLIP,
DINOv2, and SAM. However, SAM-CLIP, OV-SAM, and
FrozenSeg focus on integrating CLIP into SAM rather than
enhancing CLIP itself as DeCLIP does. AM-RADIO does
not support OVSS, as confirmed by its authors in Github is-
sues (No. 81, 55, and 42). Another study that solves similar
problems to DeCLIP is ViT-Register [11]. However, unlike
DeCLIP, ViT-Register [11] does not solve the dense percep-
tion deficiency arising from CLIP’s image-text alignment.
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