
DeSplat: Decomposed Gaussian Splatting for Distractor-Free Rendering

Supplementary Material

A. Method Details

Here, we provide additional details about DeSplat. In gen-

eral, DeSplat follows the same settings as Splatfacto from

Nerfstudio [34], utilizing a warm-up phase of 500 steps and

image downscaling factor of two at the beginning of train-

ing. We present modifications that improve the separation

of static elements and distractors next by disabling opacity

reset and modifying the colour representation. Additionally,

we describe how we combine DeSplat with the appearance

modelling in [14] and the background model in [40] which

we use in the Photo Tourism experiments.

Disabling Opacity Reset for Distractor Gaussians Kerbl

et al. [9] introduced an opacity reset mechanism in 3DGS

that removes inactive Gaussian points, e.g. ones located close

to camera views. However, in DeSplat we only apply opacity

reset on static Gaussians and disable it for the distractor

Gaussians, as we experimentally found that opacity reset can

cause confusion between occluders and static objects.

RGB Colour Representation for Distractor Gaus-

sians We modify the colour representation for the dis-

tractor Gaussians to model the colour in RGB space and

use clamping to set its range instead of using a sigmoid

function. Modelling the colours as RGB vectors instead of

using SH coefficients alleviates the need to compensate for

view-dependent effects using SH as the distractor Gaussians

are per view. Additionally, applying clamping into the range

[0, 1] of the RGB colours instead of using a sigmoid func-

tion enabled better learning of distractors with colours at the

extremes white (1) and black (0).

Appearance Embeddings We show that DeSplat can be

combined with MLPs for modelling appearance variations

with per-view image embeddings. This is commonly used for

NeRF [18] and 3DGS [14, 30, 40, 41] in the Photo Tourism

data set which consists of web images with varying weather

conditions and lighting scenarios. We follow the appearance

modelling from Kulhanek et al. [14], which uses per-image

embeddings {ej}
Ntrain

j=1
with Ntrain as the number of training

images to handle varying appearances and illuminations,

and per-Gaussian embeddings {zi}
N
i=1

to handle varying

colours for each Gaussian under different appearances. The

per-image embeddings ej ∈ R
de , per-Gaussian embeddings

zi ∈ R
dz , and the 0-th order SH coefficient c̄i are input to

an MLP fφ as

(β,γ) = fφ(ej , zi, c̄i), (6)

where β,γ ∈ R
3 are the shift and scale of an affine transfor-

mation respectively, and φ are the parameters of the MLP.

The view-dependent colour of the i-th Gaussian ci is then

modulated by

c̃i = γ ⊙ ci + β, (7)

where ⊙ is an element-wise multiplication. The toned colour

c̃i is then passed to the rasterization. In App. C, we show

the results for DeSplat on Photo Tourism where we apply

the appearance modelling on the static Gaussians.

Background Model For background modelling, we fol-

low the approach introduced in Splatfacto-W [40]. Instead

of previous methods that use a unified colour for the back-

ground, we leverage the same per-image embeddings used

for appearance modelling to predict the Spherical Harmonics

(SH) coefficients b for the background using an MLP. Prior

to applying alpha blending, we render the background RGB

colour cBG from the predicted SH coefficients:

b = fBG(ej). (8)

To encourage the opacity of both distractor and static Gaus-

sians corresponding to these areas to be low, we also apply

the opacity regularization from Splatfacto-W [40] for both

distractor Gaussians and static Gaussians:

Lbg =
∑

r∈P

|αd(r) + (1− αd(r)) · αs(r))|, (9)

where α(r) is the per-pixel accumulation of the Gaussians at

pixel r. The set P is defined as P = {(r) | M(r) > 0.6}.

Similar to Splatfacto-W [40], we also use a per-pixel mask

M to filter the area where the error of predicted background

colour and ground truth ϵ(r) is smaller than a threshold

Tϵ, with a box filter B3×3 to force the smoothness on the

background

ẽ(r) = ϵ(r) ≤ Tϵ, (10)

M(r) = (ẽ(r) ∗ B3×3). (11)

The final loss function of our method on Photo Tourism data

set is:

L = LGS + λdαd + λbgLbg. (12)

B. Additional Experimental Settings

B.1. Data Sets

RobustNeRF [29] We run experiments on all five scenes

Statue, Android, Crab (1), Crab (2), and Yoda. All images

are downscaled 8× as instructed in [29]. The scenes are

indoors and are captured under different occluder settings.

Ground Truth Splatfacto Splatfacto-W-T [40] SpotlessSplats [30] DeSplat (ours)

C
ra

b
(1

)
C

ra
b

(2
)

Y
o

d
a

Figure A10. Additional qualitative results on the RobustNeRF data set [29]. In the Crab (1), Crab (2) and Statue scenes, DeSplat

reconstructs static objects and backgrounds accurately.

The Crab(2) and Yoda scenes include both clean and clut-

tered image variants from the same viewpoint, enabling us

to perform ablation studies by varying the ratio of clean to

cluttered training images (see Fig. 9(left)).

On-the-go [26] We run experiments on the scenes Moun-

tain, Fountain, Corner, Patio, Spot, and Patio-High that

are commonly used for reporting quantitative performance

metrics [14, 26, 30]. These scenes are further categorized

according to three different occlusion rates: low (Mountain,

Fountain), medium (Corner, Patio), and high (Spot, Patio-

High) occlusion. All images are downscaled 8×, except the

Patio scene which is downscaled 4×. Furthermore, we use

Arc de Triomphe for visualization purposes (see Fig. 4).

Photo Tourism [32] We run experiments on the scenes

Brandenburg Gate, Sacre Coeur, and Trevi Fountain that are

commonly used for reporting quantitative performance met-

rics [7, 14, 40, 41, 47]. The images for these scenes are com-

plex, exhibiting different resolutions and varying illumina-

tion and weather effects, which necessitates view-dependent

appearance modelling [18]. We follow the evaluation pro-

tocol from Martin-Brualla et al. [18] where a per-image

embedding is optimized on the left half of the evaluation

image and then evaluated on its right half. Furthermore, we

follow the test-time optimization used by Kulhanek et al.

[14] to optimize the per-image embeddings for the evalua-

tion images. Table A5 shows the reported metrics for the

three scenes.

Mip-NeRF 360 [1] We run experiments on seven scenes

Ground Truth Splatfacto WildGaussians [14] SpotlessSplats [30] DeSplat (ours)

P
a

ti
o

S
p

o
t

M
o

u
n

ta
in

F
o

u
n

ta
in

Figure A11. Additional qualitative results on On-the-go data set [26].

Training Image DeSplat (ours) SLS-mlp WildGaussians

P
a

ti
o

H
ig

h
S

p
o

t

Figure A12. Example distractor masks for different methods on On-the-go data set [26].

bicycle, bonsai, counter, garden, kitchen, room and stump

on Mip-NeRF 360 data set, as a comparison for performance

on data sets that do not contain occluders. All indoor images

are downscaled 2×, and outdoor images are downscaled 4×.

B.2. Baselines

For all baselines, except Splatfacto and Splatfacto-W, we

compare the performance of DeSplat against the PSNR,

SSIM, and LPIPS metrics that were reported in their corre-

sponding works to ensure consistency. For Splatfacto and

Splatfacto-W, we run experiments for these using gsplat

[45] version 1.0.0 and nerfstudio [34] version 1.1.4.

For the qualitative results, we run experiments with Spot-

LessSplats [30] and WildGaussians [14] to obtain visualiza-

tions (e.g., see Fig. 6). We run SpotLessSplats using the

reimplementation 1 in the gsplat library (version 1.1.1).

For WildGaussians, we use the official codebase and trained

model checkpoint files for evaluation and qualitative images.

B.3. Implementation Details

We base our implementation of DeSplat on Nerfstudio code-

base [34, 45] (nerfstudio version 1.1.4 and gsplat

version 1.0.0). For a fair comparison of computational effi-

ciency, all ablation experiments are conducted on a single

1https : / / github . com / lilygoli / SpotLessSplats /

tree/main

https://github.com/lilygoli/SpotLessSplats/tree/main
https://github.com/lilygoli/SpotLessSplats/tree/main

Table A5. Performance comparison between our method and the baselines on the Photo Tourism data set [32]. The first , second ,

and third values are highlighted. DeSplat perform significantly better than Splatfacto, indicating that the explicit scene separation is useful

for these scenes.

Brandenburg Gate Sacre Coeur Trevi Fountain

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Splatfacto [34] 19.50 0.885 0.183 17.15 0.831 0.210 17.63 0.696 0.334

Splatfacto-W [40] 26.87 0.932 0.124 22.53 0.876 0.158 22.66 0.769 0.224

Splatfacto-W-A [40] 27.50 0.930 0.130 22.62 0.876 0.156 22.81 0.770 0.228

Splatfacto-W-T [40] 26.16 0.925 0.131 22.78 0.878 0.155 22.88 0.772 0.228

SWAG [7] 26.33 0.929 0.139 21.16 0.860 0.185 23.10 0.815 0.208

GS-W [47] 27.96 0.932 0.086 23.24 0.863 0.130 22.91 0.801 0.156

Wild-GS [41] 29.65 0.933 0.095 24.99 0.878 0.127 24.45 0.808 0.162

WildGaussians [14] 27.77 0.927 0.133 22.56 0.859 0.177 23.63 0.766 0.228

DeSplat (ours) - A 26.72 0.918 0.132 22.28 0.876 0.159 23.06 0.774 0.229

DeSplat (ours) 25.04 0.920 0.142 20.14 0.868 0.178 23.31 0.775 0.226

Ground Truth Splatfacto-W WildGaussians DeSplat (ours) - A DeSplat (ours)

T
re

vi
F

o
u

n
ta

in
S

a
cr

e
C

o
eu

r
B

ra
n

d
en

b
u

rg
G

a
te

Figure A13. Qualitative results on the Photo Tourism data set [32]. including Our method demonstrates high rendering quality in the

Trevi Fountain, Brandenburg Gate, and Sacre Coeur scenes.

Tesla V100 GPU. Next, we present the hyperparameters used

for the data sets.

RobustNeRF, On-the-go and Mip-NeRF 360 We use the

same hyperparameter settings for DeSplat on the scenes from

RobustNeRF [29], On-the-go [26] and Mip-NeRF 360 [1]

data sets. More specifically, we follow the default hyperpa-

rameter setting for Splatfacto [34] and train for 30k iterations.

Densification of distractor Gaussians stops after 15k iteration.

We initialize 1000 distractor points in every training image

(see Sec. 3.1 for details) and initialize the static points using

the standard method based on the COLMAP point cloud, as

employed in Splatfacto. All parameters of static and distrac-

tor points are optimized using Adam optimizer [11]. For the

distractor points, we set the learning rates for the quaternions,

scales and RGB colours to 0.01, 0.05 and 0.025 respectively,

while the learning rates are kept as the Splatfacto default for

the means and opacities. The regularization on the alpha-

blending weights are set to λd = 0.01 and λs = 0.01 in the

loss in Eq. (5).

Photo Tourism We train each scene for 200k iterations. We

employ the appearance modelling from WildGaussians [14]

which uses an MLP with 2 hidden layers of size 128. The

per-image embedding ej ∈ R
de has dimension of de = 32,

while the per-Gaussian embedding zi ∈ R
dz has dimension

dz = 24 and is initialized using Fourier frequencies with

4 components. All parameters above are optimized using

Adam optimizer [11] with learning rate 0.0005 for the MLP,

0.001 for the per-image embeddings ej and 0.005 for the

per-Gaussian embeddings zi.

For background modelling, we use the background MLP

from [40] consisting of 3 hidden layers with 128 hidden

units each. The Spherical Harmonics (SH) degree of the

background model is set to 4. The learning rates for the

background model encoder and the 0th-order SH prediction

Table A6. Performance comparison on the Mip-NeRF 360 data set [1].

outdoor indoor

bicycle garden stump room counter kitchen bonsai

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Splatfacto 24.99 0.761 0.171 27.24 0.853 0.096 26.30 0.771 0.164 31.87 0.921 0.164 28.69 0.899 0.166 31.30 0.920 0.107 31.72 0.938 0.137

DeSplat 24.80 0.756 0.171 27.03 0.852 0.096 25.54 0.751 0.176 31.51 0.920 0.164 28.29 0.897 0.166 30.93 0.919 0.105 31.42 0.936 0.138

head are 0.002, while the learning rate for the remaining SH

orders is set to 0.0001. The Adam optimizer is used, along

with an Exponential decay scheduler with decay rates of

0.0001, 0.0002, and 0.00001 separately. The regularization

weights are configured as follows: λs = 0, λd = 0.01,

and λbg = 0.15. The threshold Tϵ for regularization is set

to 0.003. All other settings are kept consistent with the

parameters used for the On-the-go and RobustNerf data sets.

We also perform an ablation study using only the ap-

pearance embedding model while disabling the background

model, which is denoted as DeSplat-A. In this ablation, the

learning rates and MLP structure for the appearance em-

bedding model are kept the same as described above, while

the regularization weights are set as follows: λs = 0.01,

λd = 0.01, and λbg = 0.

We follow the evaluation protocol [14, 18] and learn per-

image appearance embeddings for test images. During eval-

uation, we train per-image appearance embedding for 128

iterations using the Adam optimizer with a learning rate of

0.01. All other parameters remain frozen during this period.

We learn the embedding on the left half of the image, and

then evaluate metrics on the right half.

C. Additional Experimental Results

C.1. More Qualitative Results

Comparison on RobustNeRF data set We present qualita-

tive results for the Crab (1), Crab (2), and Yoda scenes from

the RobustNeRF data set in Fig. A10. Our method achieves

state-of-the-art results across all three scenes. However, we

observe that our occluder removal does not always outper-

form all baselines. In some cases, where other baselines

successfully remove occluders completely, our method oc-

casionally leaves small artefacts. Despite this, our approach

excels in reconstructing the background with exceptional

clarity. For more details see Fig. A10.

Comparison on On-the-go data set We also compare our

method with other baselines on the Patio, Spot, Mountain,

and Fountain scenes from the On-the-go data set. In the

Patio scene, our DeSplat does not perform well, as it fails

to remove all occluders effectively. This is due to a per-

son wearing a black jacket standing in one place for a long

period, resulting in black artefacts. For detailed analysis,

see the failure analysis section App. C.3. In the Spot scene,

DeSplat produces fewer artefacts and reconstructs more de-

tailed background information. As shown in Fig. A11, our

method achieves finer reconstruction on the floor, and the

wrinkles on the sofa closely resemble the ground truth. In the

Mountain scene, our method better reconstructs the global

colour and texture, especially for the wooden hut. Outside

of the zoomed-in areas, white artefacts in the bottom-right

corner and black artefacts on the chair, which are visible

in SpotlessSplats, are not present in our results. However,

our method has difficulty reconstructing the sky, as moving

clouds are sometimes incorrectly identified as dynamic el-

ements. More details can be found in C.3. In the Fountain

scene, while none of the baselines can fully remove arte-

facts near the trunk, our method successfully reconstructs

the column of the background architecture.

We also compare the ability of DeSplat, SpotLessSplats

(using Stable Diffusion features) and WildGaussians (using

DINOv2 features) to detect distractors on the On-the-go data

set, as shown in Fig. A12. Since we do not use masks for

training, we follow the same criteria as SLS for rendering the

mask, selecting areas where the distractor’s opacity is greater

than 0.5 as the mask region. Despite the lack of semantic

supervision, our method demonstrates a higher capability in

rendering accurate masks in certain scenes compared to our

baselines.

Comparison on Photo Tourism data set We evaluate our

method on the Brandenburg Gate, Sacre Coeur, and Trevi

Fountain scenes from the Photo Tourism data set, comparing

it with the baselines. As shown in Table A5, after incor-

porating appearance embeddings, our DeSplat outperforms

some baselines and achieves results close to the state-of-the-

art. However, the metrics slightly degrade when incorporat-

ing background modelling, which aligns with the results of

Splatfacto-W. Removing background Gaussians results in

the loss of high-frequency details in the background, which

reduces image quality. Moreover, it remains challenging

to fully separate the background sky from the foreground,

adding complexity to scene reconstruction. The gap between

our method and the baselines is smallest for the Trevi Foun-

tain scene, as in this scene, the distribution of distractors

in the training images is relatively concentrated, making it

easier for our method to learn dynamic elements effectively.

From Fig. A13, our method produces visually appealing

results with appearance embeddings, reconstructing fine de-

tails and achieving a smoother background compared to

Splatfacto-W and WildGaussians.

Comparison on Mip-NeRF 360 data set The results on

the Mip-NeRF 360 dataset demonstrate that DeSplat can

be applied to scenes without distractors due to its adaptive

density control of distractor points. As shown in Table A6,

our method performs comparably to Splatfacto across all

scenes in the Mip-NeRF 360 dataset, with only a slight

performance drop. This decline is primarily caused by the

complexity of certain textures, such as sharp light variations

on grass, reflections on the metal bowl in the counter scene,

and fine details like flower petals in the bonsai scene. These

factors make it more challenging to distinguish distractors

from static objects.

C.2. Computational Efficiency

In Table A7 and Table A8, we compare the memory us-

age (MB) and training time of DeSplat with Splatfacto [34],

Splatfacto-W [40], SLS-mlp, SLS-mlp with utilization-based

pruning (UBP) [30], and WildGaussians [14]. We also report

the memory usage required to store the distractor Gaussians

for DeSplat. Our rendering speed (FPS) is compared with

that of Splatfacto, as reported in Table A9 using ns-eval

in Nerfstudio [34], which calculates FPS based on both ren-

dering time and evaluation time (including PSNR, SSIM,

and LPIPS). We observe that DeSplat achieves a rendering

speed comparable to Splatfacto, as DeSplat remains a purely

splatting-based method. Since other baselines, such as SLS

and WildGaussians, use different frameworks or rasterization

libraries, it is difficult to make direct comparisons in terms of

rendering speed. While DeSplat introduces a slight memory

overhead compared to Splatfacto, only the static Gaussians

need to be retained for novel view synthesis. Training time

increases by a few minutes due to the additional memory

usage. Finally, we observe that DeSplat achieves a rendering

speed similar to Splatfacto, is more memory-efficient, and

requires less training time than other distractor-free methods.

C.3. Failure Cases

Our DeSplat performs well, particularly in scenarios with

minimal changes in lighting and weather, and where occlud-

ers vary across camera views, such as in the Yoda and Crab

scenes. However, its performance decreases in outdoor data

sets with complex lighting and weather variations, because

without the help of appearance embedding, the occluders

may also explain part of the background. For example, in

Mountain scene, the cloud in sky is not identical in every

frame, leading some of the distractor Gaussians to explain

the cloud and sky. Another limitation arises when occluders

persist across many frames. Since our method separates dis-

tractors based on photometric inconsistencies between views,

occluders that remain in the same or similar positions across

multiple frames are misclassified as static objects. A notable

example is the Patio scene. Consequently, as illustrated in

Fig. A14 for reference.

D. Future Directions

Investigating how to combine appearance modelling with

the decomposed Gaussians for separation and better control-

lability is a key next step to improve DeSplat’s applicability

for large-scale 3D reconstruction tasks [32]. Since DeSplat

is a pure splatting method, an interesting future direction is

to incorporate semantic features from foundation models for

improving the separation between static objects and distrac-

tors, which has shown to effectively remove distractors in

3DGS [14, 30]. Additionally, informing the initialization

step of the distractor Gaussians with plausible spatial loca-

tions and shapes of the occluders, and assigning Gaussian

sets per occluder could potentially yield a more fine-grained

scene decomposition. Finally, extending DeSplat to handle

dynamics in videos is an interesting future direction, since

DeSplat may confuse distractors as being static if the dis-

tractor do not move significantly across the views which is

typical for videos. We hope that this work can spur more re-

search for explicit 3D scene decomposition based on 3DGS.

Table A7. Comparison of memory size. Comparison of memory size (MB) for DeSplat, Splatfacto, Splatfacto-W, SLS-mlp, and

WildGaussians on the RobustNeRF [29] and On-the-go [26] data sets. To ensure consistency, we use Splatfacto-W-light with all functions

enabled.

Method RobustNeRF On-the-go Average

Statue Android Crab(1) Crab(2) Baby Yoda Mountain Fountain Corner Patio Spot Patio-High

Splatfacto 38.19 51.95 25.38 26.86 24.19 123.63 145.82 67.45 73.81 70.76 106.83 68.62

Splatfacto-W∗ 42.86 53.49 40.13 37.57 23.95 139.90 165.23 64.01 74.81 85.04 114.11 76.46

SLS-mlp 110.14 129.38 34.41 47.40 54.50 108.85 264.34 142.25 128.09 107.20 192.79 119.94

SLS-mlp (+UBP) 42.24 56.79 15.11 18.90 23.59 53.48 109.61 45.70 58.06 39.56 60.45 47.59

WildGaussians - - - - - 215.64 480.52 232.98 140.14 124.37 230.31 237.33

DeSplat (static) 46.99 67.80 35.89 39.40 38.75 118.27 163.73 67.03 55.69 61.28 102.52 72.49

DeSplat (distractors) 16.82 18.15 6.35 7.23 11.24 23.26 12.51 21.03 38.51 40.33 35.65 21.01

Table A8. Comparison of training time. Comparison of training time for DeSplat, Splatfacto, Splatfacto-W, SLS-mlp, and WildGaussians

on the RobustNeRF [29] and On-the-go [26] data sets. To ensure consistency, we use Splatfacto-W-light with all functions enabled.

Method RobustNeRF On-the-go Average

Statue Android Crab(1) Crab(2) Baby Yoda Mountain Fountain Corner Patio Spot Patio-High

Splatfacto 9:32 11:42 9:02 10:43 10:17 9:46 10:34 8:56 8:55 9:02 11:11 9:58

Splatfacto-W∗ 24:25 24:08 23:44 25:26 25:24 24:13 24:53 15:59 17:38 19:05 20:44 22:19

SLS-mlp 25:21 24:52 21:57 25:33 25:02 27:39 29:06 22:47 19:31 22:16 21:41 24:09

SLS-mlp (+UBP) 24:09 23:13 21:59 25:16 25:55 26:22 27:14 19:54 18:16 19:56 21:08 23:02

WildGaussians - - - - - 58:06 1:20:30 58:41 52:10 1:00:46 58:49 1:01:30

DeSplat (ours) 13:40 13:33 13:03 14:01 13:26 11:36 14:20 10:39 12:11 12:43 13:10 12:56

Table A9. Rendering Speed. Comparison of rendering speed (FPS) between DeSplat and Splatfacto.

Method RobustNeRF On-the-go Average

Splatfacto 91.04 72.98 102.85 103.03 99.83 102.87 90.32 101.58 101.60 89.85 79.13 94.01

DeSplat 104.98 101.86 109.16 112.02 114.11 110.16 89.12 136.13 108.24 96.73 101.16 107.61

M
o

u
n

ta
in

P
a

ti
o

Ground Truth Splatfacto [34] Ours

Figure A14. Failed Cases in the Mountain and Patio Scenes. The upper-left corner of the Mountain scene reveals a visible hole, while the

black artifacts in the Patio scene appear denser compared with Splatfacto.

	Method Details
	Additional Experimental Settings
	Data Sets
	Baselines
	Implementation Details

	Additional Experimental Results
	More Qualitative Results
	Computational Efficiency
	Failure Cases

	Future Directions

