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A. Organization

In this paper, we introduce DecoupledGaussian, a fast and

robust method for decoupling static objects from contact

surfaces while restoring geometry and texture for improved

object-scene interaction. Using the MLS-MPM simulator,

our approach extends beyond rigid 3D reconstructions, en-

abling more dynamic and flexible applications of Gaussian

Scene (GS) representations. We encourage readers to view

the accompanying video for demos of the dynamic effects.

This supplementary material provides detailed material pa-

rameters, methodology, and additional experiments to offer

a comprehensive understanding of our approach.

Note: Figures, sections, and tables in the supplemen-

tary material are prefixed with a letter for distinction, while

those without a prefix refer to content in the main paper.

B. Material Properties

We use two constitutive models from Zong et al. [15]: Fixed

Corotated and Drucker-Prager Plasticity. The material pa-

rameters, including Young’s modulus (E) and shear modu-

lus (µ) (Sec. 5.1), for each case are summarized in Table

A1.

Table A1. Material Properties Configuration.

Case Figure Constitutive Model µ E

Bear collisions Fig. 1 Fixed Corotated 0.3 3× 106

Bear melting Fig. 1 Drucker-Prager Plasticity 0.3 3× 106

Kitchen Fig. 3 Fixed Corotated 0.3 3× 106

Garden collisions Fig. 6 Fixed Corotated 0.3 3× 106

Bonsai collisions Fig. 6 Fixed Corotated 0.4 2× 106

Figurines collisions Fig. 6 Fixed Corotated 0.3 3× 106

Room Fig. 7 Fixed Corotated 0.3 3× 106

Truck Bicycle Fig. 7 Fixed Corotated 0.3 3× 106

Banana Fig. 8 Fixed Corotated 0.3 3× 106

Pillow Fig. 8 Fixed Corotated 0.3 3× 106

Mustard Fig. 8 Fixed Corotated 0.3 3× 106

Bonsai Fig. A4 Drucker-Prager Plasticity 0.4 2× 106

Kitchen Fig. A4 Drucker-Prager Plasticity 0.3 3× 106

C. Technique Details

C.1. Wigner Dmatrix

The Wigner D-matrix [8, 12] (Sec. 4.3) D
(j)
m′,m(α, β, γ) de-

scribes the rotation of a function on the sphere in terms of

Euler angles (α, β, γ):

D
(j)
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(j)
m′,m(β)e−imγ ,

where:

• j is the degree of the spherical harmonic,

• m and m′ are the magnetic quantum numbers, which

range from −j to j,

• d
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m′,m(β) is the small Wigner d-matrix, defined as:
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SH Coefficient Transformation To rotate view-

dependent spherical harmonic (SH) coefficients C′ before

simulation, we compute the Wigner D-matrix for a given

rotation matrix, derived from Euler angles (α, β, γ). Let

the view-dependent SH coefficients be denoted as:

C′ = {c(j)m | m = −j,−j + 1, . . . , j},

where c
(j)
m corresponds to the coefficient of degree j and

magnetic quantum number m.

For rotation, the transformed SH coefficients Ĉ are com-

puted as:

Ĉ = D(j)C′,

where D(j) is the Wigner D-matrix of degree j. Specif-

ically, each SH coefficient c
(j)
m is rotated using its corre-

sponding Wigner D-matrix element:

ĉ(j)m =

j
∑

m′=−j

D
(j)
m′,m(α, β, γ)c

(j)
m′ .

Here, ĉ
(j)
m is the transformed coefficient, and the sum runs

over all values of m′ from −j to j.

C.2. Joint Poisson Fields

To resolve conflicts (Sec. 4.2.1) between the indicator func-

tions XS and XS
O

, we first ensure that S remains smooth and

continuous before addressing the conflicts. The process is

performed iteratively as follows:

1. Identify Surface Points of S:

• Intersection Region:

{x | 0.5 < XS(x) < 0.6 and XS
O(x) > 0.5}

• Non-Intersection Region:

{x | 0.5 < XS(x) < 0.6 and XS
O(x) < 0.5}

2. Compute Mean Curvature:



• Compute the mean curvature H(x) at each surface

point using neighboring points.

3. Adjust Surface Points in Intersection Regions:

• For each point x in the intersection region, find the

nearest point xclosest in the non-intersection region. If

|H(x)−H(xclosest)| > τ , update:

XS(x) = 0.49.

4. Ensure Surface Smoothness:

• Repeat steps 1–3 for 10 iterations to achieve smooth-

ness.

5. Resolve Conflicts in XS
O

:

• For points x where XS
O
(x) > 0.5, check neighbors. If

any neighbor satisfies XS(x) > 0.5, update:

XS
O(x) = 0.49.

C.3. Normals Disambiguities

The normals of {kg}g∈S (Sec. 4.2.1) correspond to the di-

rection of the minimum scale factor of the flattened Gaus-

sian. Due to ambiguity in determining the normal direc-

tion, as both directions along the shortest axis are possible,

we resolve this by utilizing the training viewing direction.

Specifically, we ensure the angle between the normal and

viewing directions exceeds 90 degrees, as observations are

made from the exterior of the surface. We then count the oc-

currences of each direction across training views and select

the one with the highest number of votes.

C.4. Mesh2Gaussians

We bind new Gaussians to the mesh triangles (Sec. 4.2.4)

as follows: for a given triangle with vertices {v1,v2,v3},

the center of the new Gaussian is set at the centroid of the

triangle, calculated as:

k =
1

3
(v1 + v2 + v3).

The normal vector r1 to the plane of the triangle is com-

puted as:

r1 =
(v2 − k)× (v3 − k)

∥(v2 − k)× (v3 − k)∥
,

where × denotes the cross product. The second Gaussian

axis r2 is defined as:

r2 =
v2 − k

∥v2 − k∥
.

The third vector r3 is computed through a one-step Gram-

Schmidt projection [1]:

r3 = proj(v3 − k; r1, r2).

The Gaussian rotation matrix is then defined as:

R = [r1, r2, r3].

The scaling values are calculated as follows: s2 = ∥v2−k∥
for the direction r2, s3 = ∥rT3 (v3 − k)∥ for the direction

v3, and s1 = ϵ, where ϵ = 1 × 10−8, for the shortest axis

r1 to account for the flattened 3D Gaussian.

D. Experiments

PhysGaussian GIC OursGround Truth

Figure A1. Object Restoration. Restored objects from the De-

coupling benchmark are rendered from different viewpoints. From

top to bottom: Banana, Pillow, and Mustard.

D.1. User Study Statistics

The statistics for each participant (Sec. 5.2) in our user

study on in-the-wild video evaluation are summarized in

Tab. A2. Notably, all participants rated our method the

highest across three tasks: scene restoration, object restora-

tion, and object-scene interactive simulation.

D.2. Additional Evaluations

Object Restoration As shown in Fig. A1, we present

restored objects rendered from various viewpoints derived

from the interactive simulation in Fig. 8. Our joint Poisson

field W effectively repairs incomplete and broken surfaces

of O, outperforming PhysGaussian [13] and GIC [2]. By

bounding the dense points PO within the object’s interior,

our method achieves superior restoration of both texture and

geometry compared to these approaches.

Interactive Simulation As shown in Fig. A4, we provide

additional qualitative evaluations of our method applied to

object-scene interactive simulation, which are not included

in the main paper or supplementary video.



Table A2. User Study Statistics. U1, U2, ..., U10 represent the IDs of individual participants.

Metrics Methods U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

Scene Restoration

(SRQ ↑)

GScream 1.80 2.00 2.00 2.40 2.20 1.80 2.20 1.60 2.20 1.20

VR-GS 2.00 2.20 2.20 2.40 2.20 2.00 2.60 1.80 2.20 1.60

Ours 3.20 3.60 3.60 4.00 3.60 3.20 3.40 3.80 3.60 2.80

Object Restoration

(ORQ ↑)

PhysGaussian 1.50 1.50 1.00 1.50 1.00 1.25 1.50 1.50 1.50 1.75

GIC 2.00 1.75 1.50 1.75 1.25 2.00 1.25 2.00 1.50 1.00

Ours 4.00 4.50 4.25 4.00 3.25 4.00 3.75 4.25 4.00 4.25

Interactive Simulation

(ISF ↑)

VR-GS(S)+PhysGaussian(O) 1.50 1.50 1.25 1.75 1.50 1.50 1.25 1.75 1.50 1.50

Ours(S)+PhysGaussian(O) 2.50 2.75 2.25 2.50 2.00 3.00 2.50 3.00 2.75 2.75

Ours(S)+GIC(O) 3.00 3.00 2.50 3.00 2.75 2.25 2.75 2.50 2.50 3.00

Ours(S)+Ours(O) 4.25 4.50 4.25 4.00 4.50 4.25 4.50 4.25 4.50 4.50

Sampled View LGM TripoSR PoinTr Ours

Figure A2. Generative Models. Results for state-of-the-art mod-

els using a single image as input: Gaussian generative model LGM

[9] and mesh generative model TripoSR [10]; and proxy points as

input: point cloud completion model PoinTr [14].

GaussianEditor 

Infusion

Figure A3. Additional Methods. Results for GaussianEditor [3]

and Infusion [6] reveal significant limitations when using their pro-

vided implementations.

Simulator Our MLS-MPM implementation leverages

both NVIDIA Warp [7] and Taichi [4]. We performed

timing comparisons using the Wolf, Pillow2Sofa, and

VaseDeck datasets provided by PhysGaussian [13]. The re-

sults are shown in Table A3, where the computation time

per update timestep is expressed in 10−3 s.

Table A3. Timing comparison of MLS-MPM simulation engines.

Computation time per update timestep (in 10
−3 s).

Method Wolf Pillow2Sofa VaseDeck

Taichi [4] 2.560 1.390 0.583

Warp [7] 2.290 2.510 0.538

Generative Models We evaluate state-of-the-art genera-

tive models for mesh generation [10, 11], Gaussian genera-

tion [9], and point cloud completion [5, 14]. The first two

models take a single frame as input, while the point cloud

completion models use our proposed proxy points PO as

input. Although some models generate reasonable shapes

(see Fig. A2), they often fail for untrained inputs, exhibit-

ing inaccuracies in geometry and texture that diverge from

the target properties in the raw scene.

Additional Methods We evaluate two recent approaches,

GaussianEditor [3] and Infusion [6], for scene S restoration.

As shown in Fig. A3, both methods exhibit significant lim-

itations. Infusion suffers from severe errors due to inaccu-

rate depth estimation and projection issues in its implemen-

tation. Similarly, GaussianEditor demonstrates inconsistent

segmentation propagation across views, leading to incom-

plete object removal or residual artifacts. Additionally, our

experiments show that GaussianEditor runs approximately

five times slower than the runtime reported in the original

paper. These limitations have also been noted by other users



Figure A4. Additional Interactive Simulations. Evaluations are rendered with moving cameras. From top to bottom: Banana (collision

and elasticity), Mustard (collision and elasticity), Bonsai (fracture and granular flow), and Kitchen (melting and granular flow).

on the GitHub issue channels for the respective implemen-

tations.
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