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1. Assumption and Proofs
1.1. Assumption of Adv-noise Distribution
A common assumption for instance feature distribution is
to model it as a Gaussian distribution [5]. Obtained by sub-
tracting from clean data and adversarial data, adversarial
noises naturally form a Gaussian distribution. Specifically,
assuming the clean data follows a Gaussian distribution,
the generation of adversarial samples can be represented
as: x̂ = x + η,x ∼ N . Since adversarial data gener-
ated by an untargeted attack shares the same classes as the
clean data and has a consistency with clean data on vision, it
also follows a Gaussian distribution x̂ ∼ N . Consequently,
the adversarial noise forms a Gaussian distribution:η =
x̂ − x,η ∼ N . For convenience of expression, we as-
sume that noise r.v η satisfied truncated Gaussian distribu-
tion N (µ, σ2Id) with it’s truncated interval is [−ϵ, ϵ]d.

1.2. Theorem Proofs
Theorem 1. Let Pa be the distribution set composed of all
the adv-noise distributions. Given independent noise distri-
butions Qi, i ∈ N+. For ∀ i ̸= j, Qi and Qj are proximal
noise distributions if the following conditions are met.

1) if Qi, Qj ∈ Pa.
2) if ∃ ϵµ, ϵσ > 0 s.t. ∥µi−µj∥ < ϵµ and |σi−σj | < ϵσ

where the ∥ · ∥ is a Euclidean norm on Rn.

Proof. Denoting the distribution of natural sample x as P ,
we use the 1-Wasserstein distance as the metric d(·, ·), to
prove the theorem.

1) We denote the independent adv-noise distribution of
ηi as Qi ∈ Pa where ηi = x̂i − x, and a zero-distribution
as P where its mean and variance are zero vectors. Then
the 1-Wasserstein distance between ηi and ηj can be bound
by its metric property and dual form:

W1 (Qi, Qj) ≤W1(Qi, P ) +W1(Qj , P )

≤ sup
∥g∥L≤1

Eηi∼Qi [g(ηi)]− Ex∼P [g(x)]

+ sup
∥g∥L≤1

Eηj∼Qj
[g(ηj)]− Ex∼P [g(x)]

≤2ϵ,

where ∥g∥L is the Lipschitz constant of function g w.r.t. the
norm induced by the metric here.

2) Consider two random noise ηi ∼ Ni(µi, σ
2
i Id) and

ηj ∼ Nj(µj , σ
2
j Id). While it’s mean and variance satisfied

that ∥µi−µj∥ ≤ ϵ and |σi−σj | ≤ ϵ. then the 2-Wasserstein

distance between η1 and η2 is

W2

(
ηi,ηj

)2
=
∥∥µi − µj

∥∥2 + trace(σ2
i Id + σ2

j Id

− 2
(
(σ2

j Id)
1/2σ2

i Id(σ
2
j Id)

1/2
)1/2

)

≤ϵ2µ + d · ϵ2σ,

where (σ2
i Id)

1/2 denotes the principal square root of
σ2
i Id.

Corollary 1. 1) All noise distributions proximal
to the known adversarial distribution p(η) form
an open ε-ball centered on p(η), denoting as
Pε = {p(ηi)|d(p(ηi), p(η)) < ε)}, and also form a
metric space (Pε, d).

2) The adv-noise distribution set is also located in this
ball: Pa ⊂ Pε.

3) Based on the properties of the complete metric space
(Pε, d), for all subset Pi ⊂ Pε, there exists a finite open
covering of the subset: Pi ⊂ {Gc}c∈I.

Proof. 1) Consider 1-Wasserstein distance as metric d, for
∀Qi, Qj ∈ Pε, we have

W1 (Qi) ≥ 0. W1 (Qi, Qj) = 0 if and only if Qi = Qj .
(1)

W1 (Qi, Qj) = W1 (Qj , Qi) . (2)
W1 (Qi, Qj) ≤ W1(Qi, P ) +W1(Qj , P ). (3)

Therefore, (Pε, d) is a metric space.
2) It is obvious according to the definition of Pε.
3) For any subset Pi = {pi1, pi2, . . . , pin} ⊂ Pε, we

can construct several spherical subsets {Pij} with pi1 as
the center and |ε − d(pi1, p(η))| as the radius. {Pij} is a
open covering of Pi.

2. Experimental Details

2.1. Dataset
CIFAR10 CIFAR10 consists of a training set of 50,000
images and a test set of 10,000 images, each with a reso-
lution of 32x32 pixels. These images are divided into 10
different classes. The classes represent everyday objects
such as airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks.



Table 1. Detection AUROC against various gradient-based attacks on CIFAR-10 (ϵ = 4/255).

Detector BIM PGD RFGSM DIM MIM NIM VNIM SNIM AA
SPAD [20] 0.9951 0.9938 0.9935 0.9952 0.9966 0.9985 0.9947 0.9963 0.9974
EPSAD [26] 0.9999 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
ours 0.9965 0.9965 0.9968 0.9947 0.9980 0.9980 0.9976 0.9964 0.9988

Table 2. Comparison of AUROC scores of detecting gradient-based attacks on ImageNet100 (ϵ = 4/255).

Detector BIM PGD RFGSM DIM MIM NIM VNIM SNIM AA
LID [14] 0.9782 0.9750 0.9637 0.8942 0.9146 0.8977 0.8865 0.8752 0.9124
LiBRe [3] 0.9259 0.9548 0.9769 0.9243 0.8725 0.9013 0.8862 0.8694 0.8653
SPAD [20] 0.9846 0.9851 0.9833 0.9815 0.9820 0.9823 0.9891 0.9877 0.9890
EPSAD [26] 0.9998 0.9989 0.9992 0.9923 0.9918 0.9972 0.9946 0.9908 0.9998
ours 0.9911 0.9912 0.9911 0.9863 0.9931 0.9934 0.9878 0.9914 0.9941

ImageNet100 ImageNet-100 is a subset of ImageNet [1],
comprising 100 classes selected from the original Ima-
geNet dataset, each containing a substantial number of
high-resolution images, with 1,300 images per class.

Makeup Makeup comprises images of faces with and
without makeup. These images are collected from vari-
ous sources to ensure a diverse representation of facial fea-
tures, makeup styles, and skin tones. There are 333 before-
makeup images and 302 after-makeup images.

CelebA-HQ CelebA-HQ dataset is a high-quality ver-
sion of the original CelebA dataset.CelebA-HQ consists of
30,000 high-resolution images of celebrity faces, derived
from the CelebA dataset through a progressive GAN-based
upsampling and quality enhancement process. Each image
in CelebA-HQ is 1024x1024 pixels.

LFW LFW contains 13,233 labeled images of 5,749 dif-
ferent individuals collected from the internet, each image is
labeled with the name of the person pictured. LFW images
vary widely in terms of lighting, facial expression, pose, and
background, closely reflecting real-world conditions. The
images are provided in a resolution of 250x250 pixels, and
the faces are roughly aligned based on the eye coordinates.

2.2. Adversarial Attacks
Gradient-based attacks We use Torchattacks [9] to im-
plement adversarial attacks. The victim models used for ad-
versarial data generation are ResNet-50 [6] for ImageNet,
WideReseNet-28 for CIFAR10 [10], and ArcFace [2] for
face attacks.

Generative-model-based attacks For CDA, we use the
pre-trained generator which has been trained on ImageNet

with a relativistic loss against ResNet152. For TTP, we use
the pre-trained-generators trained against ResNet50 for 8
target labels, they are: Grey Owl(24), Goose(99), French
Bulldog(245), Hippopotamus(344), Cannon(471), Fire En-
gine(555), Parachute(701), Snowmobile(802). We generate
1000 adversarial examples for each label and randomly se-
lect 125 adversarial examples for each label. For M3D, its
settings are consistent with TTP. For Diff-PGD, we use the
global attack to craft adversarial examples, target classifier
is ResNet50, the diffusion model accelerator is ddim50, the
reverse step in SDEdit is 3, and the iteration number of PGD
is 10, the step size is 2. For Diff-attack, the target classifier
is ResNet50, DDIM sample steps are set as 20, and itera-
tions to optimize the adversarial image are set as 30. For
the methods mentioned above, we all use the authors’ im-
plementation to craft adversarial examples.

Face attacks For face attacks, 1 gradient-based at-
tack TIPIM [24], two GAN-based attacks including Adv-
Makeup [25] and AMT-GAN [8], and 3 physical attacks
including Adv-Sticker [18], Adv-Glasses [16], and Adv-
Mask [18] produce face adversarial samples by attacking
the victim face model ArcFace [2].

2.3. Baselines
Adversarial detection For LiBRe1, we trained a ResNet-
50 on ImageNet100 and finetuned it using the authors’
implementation, the parameters were kept consistent with
theirs. For EPSAD2, we use the pre-trained models pro-
vided by the authors and follow the instructions by the
authors to get the detection results. Due to the time-
consuming nature of computing EPS, we evaluated 1,000
images for each attack method on ImageNet-100.

1https://github.com/thudzj/ScalableBDL/tree/efficient/exps
2https://github.com/ZSHsh98/EPS-AD



Figure 1. The influence of parameters on the detection performance on ImageNet100.
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Figure 2. The influence of attack intensity on the detection performance on ImageNet100.

Synthetic image detection Since existing adversarial ex-
ample detection methods do not address adversarial exam-
ples based on generative models, we compared our method
with various synthetic image detection methods to effec-
tively validate its effectiveness. We conducted detection
experiments on adversarial examples based on generative
models using the following methods: CNN-Detection[21]3,
LGrad[17]4, Universal-Detector[15]5, and DIRE[23]6. We
conducted experiments using the pre-trained models and au-
thors’ implementation code of the above methods.

Baselines for face adversarial data detection We fol-
low SPAD [20]7 to compare against two face forgery de-
tection methods, Luo et al.[13]8 and He et al.[7]9, as well as
ODIN [11]10 on detecting GAN-based face attacks.

2.4. Implementation Details
Experiments are implemented using 2 Nvidia Deforce RTX
3090 GPUs. For training detectors, we use an Adam opti-

3https://github.com/peterwang512/CNNDetection
4https://github.com/chuangchuangtan/LGrad
5https://github.com/Yuheng-Li/UniversalFakeDetect?tab=readme-ov-

file#weights
6https://github.com/ZhendongWang6/DIRE
7https://github.com/cc13qq/SPAD
8https://github.com/crywang/face-forgery-detection
9https://github.com/SSAW14/BeyondtheSpectrum

10https://github.com/Jingkang50/OpenOOD

mizer with a learning rate of 2e-4, momentum of 0.9, and
weight decay of 5e-6.

Data pre-processing We resize images to 32×32 for CI-
FAR10, 256× 256 for ImageNet100, Makeup and CelebA-
HQ, and 112× 112 for LFW. For ImageNet100, after resiz-
ing, we center-crop the images to 224× 224. After that, all
of the images are resized to 256× 256 followed by random
horizontal flip and normalization.

Noise distribution As related in the main paper, we flat-
ten the generated noise to a vector and estimate its distribu-
tion. However, for a noise with a shape of 256 × 256 × 3,
the length of the corresponding flattened noise is 196, 608,
making it impossible to run the algorithm on a single GPU.
Therefore, we fix the size of noise to 32×32×3 and concate-
nate several sampled pseudo noises to fit the larger image.

3. More Results of Adversarial Detection

To further evaluate the effectiveness of our proposed
method, we conduct more experiments on detecting adver-
sarial attacks.

3.1. Detection Against More Attacks
We conduct experiments to detect more gradient-based
attacks including RFGSM [19], VNIFGSM [22], and



SNIFGSM [12] on CIFAR10 and ImageNet100. As re-
ported in Table 1 and Table 2, our method demonstrates
effective detection (achieving an AUROC score over 0.99)
across a variety of attack methods, validating our assump-
tions of the noise distribution proximity.

3.2. Impact of Parameters

We select typical attacks and present curves in Figure 1
to depict the impact of parameters on the detection perfor-
mance. The parameters ϵµ and ϵσ have little effect on de-
tecting PGD, while γc and γl have significant effects on de-
tecting M3D and Diff-PGD. This might be because, regard-
less of whether ϵµ and ϵσ are large or small, the accuracy
of forming the open coverage remains unaffected as long
as the data is sufficient. However, thresholds that are too
small lead to the addition of pseudo-noise to insensitive and
low-frequency regions, while thresholds that are too large
result in extremely sparse pseudo-noise that is far from the
adversarial noise distribution.

To explore the impact of perturbation intensity of at-
tacks, we select typical attacks and present the curves in
Figure 2, where ϵa denotes the intensity of unseen attacks
and ϵi denotes the intensity of the initial attack for Pertur-
bation Forgery. We can see that the detector trained with a
minor ϵi is able to detect adversarial data generated with a
larger ϵa. When ϵi is larger, adversarial data generated with
a minor ϵa is not easy to detect. This might be because ad-
versarial noises generated with a higher ϵa tend to be more
obvious to detect. When ϵa is too small than ϵi, the distance
between the initial attack noise and the unseen attack noise
is too far away, reducing the detection performance.

3.3. More Evaluation Metrics

We further report detection performance using TPR@FPR
(True Positive Rate at a fixed False Positive Rate) and accu-
racy (ACC) metrics on CIFAR-10, including detection ac-
curacy on clean data. As shown in Table 3, with FPR fixed
at 0.01, our method achieves an average TPR above 0.98
and an average ACC above 0.97. These results demonstrate
the strong detection performance of our approach.

3.4. Another Distribution Modeling

We use a premium distribution, the von Mises-Fisher (vMF)
distribution, as an alternative model for the noise represen-
tation distribution following [4]. We can model the embed-
ding space as a mixture of class-conditional vMF distribu-
tions, one for each class c ∈ {1, 2, . . . , C}:

pcd (r;µc, κc) = Zd (κc) exp
(
κcµ

⊤
c r

)
, (4)

where κc and µc are class-conditional parameters. Under
this probability model, an noise vector r is assigned to class

Table 3. More detection metrics on CIFAR-10(ϵ = 4/255). ”thr”
denotes the classification threshold and ”Clean” denotes clean data
without being attacked.

Attack TPR@FPR=0.01 ACC@thr=0.5
BIM 0.9800 0.9650
PGD 0.9800 0.9700
RFGSM 0.9840 0.9710
DIM 0.9760 0.9530
MIM 0.9870 0.9910
NIM 0.9860 0.9920
VNIM 0.9850 0.9850
SNIM 0.9840 0.9860
AA 0.9810 0.9880
Clean - 0.9860

Table 4. Comparison of AUROC scores against adversarial attacks
on CIFAR-10 with different noise distributions.

Attack Gaussian vMF
BIM 0.9965 0.9977
PGD 0.9965 0.9961
RFGSM 0.9968 0.9965
DIM 0.9947 0.9952
MIM 0.9980 0.9979
NIM 0.9980 0.9983
VNIM 0.9976 0.9952
SNIM 0.9964 0.9965
AA 0.9988 0.9974

c with the following normalized probability:

p
(
y = c | r;

{
κj ,µj

}C

j=1

)
=

Zd (κc) exp
(
κcµ

⊤
c r

)∑C
j=1 Zd (κj) exp

(
κjµ⊤

j r
) .

(5)
where Iv is the first kind of modified Bessel function with
order v. Zd(κ) can be calculated in closed form based on
κ and the dimensionality d. Importantly, the vMF distribu-
tion is characterized by two parameters: the mean vector
µ and concentration parameter κ. Samples that are more
aligned with the center µ have a higher probability density,
and vice versa. Here κ indicates the tightness of the distri-
bution around the mean direction µ. The larger the value of
κ, the stronger the distribution is concentrated in the mean
direction. In the extreme case of κ = 0, the sample points
are distributed uniformly on the hypersphere.

We conduct experiments on CIFAR-10 using the vMF
distribution. As shown in Table 4, compared with Gaus-
sian modeling, using the vMF distribution does not improve
detection performance. Modeling the noise distribution as
a multivariate Gaussian is sufficient to construct the open
covering of adversarial noise and train a robust detector.



3.5. Time Overhead of Inference
We conducted experiments to calculate the inference time
overhead for 100 samples on ImageNet100. As shown in
Table 5, the time cost of our model is slightly higher than
that of LID, LiBRe, and SPAD, and it only takes 0.0485 sec-
onds to process one image. For actual use, a minor increase
in time is perfectly acceptable in exchange for a significant
increase in detection performance.

Table 5. Time overhead of inference (second) on ImageNet100

Detector LID LiBRe EPSAD SPAD ours
Time (second) 1.80 2.56 396.81 4.56 4.85

3.6. Detect Attacks with Various Attack Intensities
To evaluate detection performance against attacks of vary-
ing intensities ϵ, we train a detector using the FGSM attack
with ϵ = 2, ϵ = 4, and ϵ = {2, 4}, and test it against at-
tacks with ϵ = 2, 4, 6, 8. As shown in Table 6, the detection
performance experiences a minor decrease when encoun-
tering lower-intensity attacks, such as ϵ = 2. However,
for higher-intensity attacks, the detector maintains strong
detection performance. To mitigate performance degrada-
tion, training the detector across a range of attack intensi-
ties could be beneficial, achieving an AUROC of 0.9924
and 0.9910 against PGD at ϵ = 2 on CIFAR-10 and Ima-
geNet100, respectively.

Table 6. Cross-Intensity Detection (AUROC) against PGD, where
the detectors are trained with the initial attack FGSM under ϵ = 2,
ϵ = 4, and ϵ = {2, 4}.

Dataset Detector ϵ = 2 ϵ = 4 ϵ = 6 ϵ = 8

CIFAR10
ϵ = 2 0.9920 0.9944 0.9997 0.9999
ϵ = 4 0.9554 0.9965 0.9993 0.9998
ϵ = {2, 4} 0.9924 0.9961 0.9995 0.9999

ImageNet100
ϵ = 2 0.9911 0.9914 0.9920 0.9964
ϵ = 4 0.9513 0.9912 0.9957 0.9994
ϵ = {2, 4} 0.9910 0.9907 0.9968 0.9994

3.7. Cross-Model Detection
To validate detection ability in a cross-model scenario, we
train a detector using adversarial data generated on WRN-
28 and test it with adversarial data crafted on ResNet50 and
ResNet101. As shown in Table 7, the detector maintains
high detection performance in this setting, achieving AU-
ROC scores above 0.99, demonstrating the stability of our
method. The results also demonstrate that a smaller back-
bone, such as WRN-28, can still achieve strong detection
performance.

Table 7. Cross-Model Detection (AUROC) on CIFAR-10 under
ϵ = 4/255, where the initial attack is executed on WRN-28 but
detect the adversarial data crafted with other models.

Attack ResNet50 ResNet101
BIM 0.9966 0.9965
PGD 0.9965 0.9965
RFGSM 0.9962 0.9958
DIM 0.9928 0.9950
MIM 0.9974 0.9963
NIM 0.9983 0.9966
VNIM 0.9974 0.9962
SNIM 0.9968 0.9970
AA 0.9990 0.9988

3.8. Standard Deviation

We run our method on CIFAR-10 and ImageNet100 against
attacks under ϵ = 4/255 with 5 different random seeds and
report the standard deviation of AUROC in Table 8. From
the results, the detector trained with perturbation forgery
has a very small standard error, indicating the consistency
and repeatability of our method.

Table 8. Standard deviation of AUROC with 5 different random
seeds against adversarial attacks under ϵ = 4/255

Attack CIFAR-10 ImageNet100
BIM 0.9965±0.0013 0.9911±0.0024
PGD 0.9965±0.0011 0.9912±0.0032
RFGSM 0.99368±0.0012 0.9911±0.0030
DIM 0.9947±0.0024 0.9863±0.0018
MIM 0.9980±0.0009 0.9931±0.0033
NIM 0.9980±0.0015 0.9934±0.0027
VNIM 0.9976±0.0017 0.9878±0.0022
SNIM 0.9964±0.0013 0.9914±0.0021
AA 0.9988±0.0008 0.9941±0.0016

3.9. Cross-Dataset Detection

To evaluate detection ability in a cross-dataset scenario, we
train detectors on CIFAR-10, CIFAR-10 + ImageNet100,
and ImageNet100 with distributions estimated on CIFAR-
10, and test them on ImageNet100. As shown in Table 9, de-
tectors trained on low-resolution datasets, such as CIFAR-
10, struggle to perform well on higher-resolution datasets
like ImageNet100. However, this limitation can be ad-
dressed by jointly training the detector on both low- and
high-resolution datasets. Additionally, distribution estima-
tion is not restricted by the dataset, allowing us to use a
well-estimated distribution to optimize detector training on
a specific dataset.



Natural

Pseudo-adversarial
Figure 3. Natural images and corresponding pseudo-adversarial images generated by Perturbation Forgery.

Table 9. Cross-Dataset Detection against attacks under ϵ =
4/255, where the detectors are trained on CIFAR-10, CIFAR-
10 + ImageNet100, and ImageNet100 with distribution estimated
on CIFAR10, and tested on ImageNet100 dataset. ”Joint” de-
notes the detector jointly trained on CIFAR-10 + ImageNet100,
and ”ImageNet100†” denotes the detector trained on ImageNet100
with distribution estimated on CIFAR10.

Attack CIFAR-10 Joint ImageNet100†

BIM 0.4176 0.9911 0.9911
PGD 0.4152 0.9910 0.9918
RFGSM 0.4155 0.9912 0.9911
DIM 0.4275 0.9904 0.9871
MIM 0.3983 0.9935 0.9933
NIM 0.4087 0.9926 0.9921
VNIM 0.4052 0.9903 0.991
SNIM 0.4120 0.9918 0.9921
AA 0.4263 0.9954 0.9936

FGSM BIM PGD DIM MIM NIMFG
SM

BI
M

PG
D

DI
M

M
IM

NI
M

1.0000 0.9951 0.9938 0.9952 0.9966 0.9985

0.9987 1.0000 0.9959 0.9978 0.9949 0.9983

0.9976 0.9948 1.0000 0.9935 0.9942 0.9982

0.9982 0.9952 0.9944 1.0000 0.9955 0.9976

0.9980 0.9966 0.9948 0.9967 1.0000 0.9979

0.9964 0.9974 0.9960 0.9956 0.9947 1.0000
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Figure 4. Impact of the initial attacks (AUROC) on CIFAR-10
under ϵ = 4/255. Y-axis: initial attack. X-axis: testing attack.

3.9.1. Impact of the Initial Attack
Our proposed perturbation forgery requires a commonly
used attack to construct the open covering. To assess the
impact of the initial attack choice, we train detectors us-
ing distributions estimated from various initial attacks and
test them against other attacks on CIFAR-10. As shown in

(a) (b)

Figure 5. 2D T-SNE visualizations. (a) CIFAR-10 flattened noises
of adversarial data and Perturbation Forgery. (b) CIFAR-10 fea-
tures extracted by the model trained with Perturbation Forgery.

Figure 4, the detectors consistently achieve a high AUROC
score above 0.99, indicating that our method does not de-
pend on a specific attack.

4. Limitations
The major limitation of our method is that finding the op-
timal scale parameters for distribution perturbation is chal-
lenging. We must rely on continuous experimentation to
determine these parameters. Specifically, we initiate param-
eters of uniform distribution as ϵµ = 1 and ϵσ = 0.001, and
adjust them using a small step factor. Finally, we find the
experiment results when ϵµ = 3 and ϵσ = 0.005 are close
to optimal. However, even if these parameters are not opti-
mal, our method still maintains consistent detection perfor-
mance across various attacks on multiple general and facial
datasets, with a satisfactory inference time cost.

The second limitation of our method is that while detec-
tors trained with a smaller attack intensity can perform well
against attacks of higher intensity, detectors trained with a
larger attack intensity struggle to detect attacks of lower
intensity. However, this issue can be addressed by jointly
training the detector across a range of attack intensities, as
verified in Section 3.6.

Another limitation is the lack of cross-dataset general-



ization. A detector trained on a low-resolution dataset,
such as CIFAR-10, often struggles to generalize to higher-
resolution datasets like ImageNet. One approach to address
this limitation is to jointly train the detector on datasets with
varying resolutions, as verified in Section 3.9.

5. More Visualization Results

5.1. Visualization on CIFAR-10
We extract features and flattened noises from adversarial
data and Perturbation Forgery from CIFAR-10 and visualize
them using 2D t-SNE projection in Figure 5.

5.2. Visualization Examples
Some examples of Perturbation Forgery at ϵ = 4/255 are
shown in Figure 3.
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