Do ImageNet-trained models learn shortcuts?
The impact of frequency shortcuts on generalization

Supplementary Material

1. HFSS configurations

This section details the HFSS configurations on C-10, de-
signed to analyze the trade-off between efficiency and ef-
fectiveness in identifying shortcuts. We discuss the ratio-
nale behind the choice of frequency patch size and the per-
centage of sampling frequencies. We then present tracking
statistics of the lowest loss for an ImageNet model as fre-
quency subsets are incrementally sampled for shortcut eval-
uation, which guides the selection of B, for the HFSS con-
figuration on IN-1k.

1.1. Efficiency and effectiveness of HFSS

We perform 10 experiments on C-10, each with different
number of B as shown in Tab. 1. The initial configuration
is noted as CF-1 which generates in total 15000 candidate
frequency subsets for shortcut relevance evaluation. The
fastest (last) configuration is noted as CF-2.10, which only
generates in total 70 candidate frequency subsets for eval-
uation. From the results in the paper, with CF-2.10 HFSS
manages to uncover most shortcuts found by CF-1 at low
thresholds. There exists a trade-off between the efficiency
and effectiveness of HFSS in finding shortcuts.

Table 1. Experiment configurations on C-10.

No. of sampled candidates Total
CF- Bl Bg B3 B4

1 1000 2000 4000 8000 15000
2.1 200 800 4000 4000 9000
22 200 800 2000 2000 5000
23 200 800 500 500 2000
24 200 400 500 500 1600
25 200 200 500 500 @ 1400
26 200 200 300 300 1000
2.7 100 100 200 200 600
2.8 50 50 100 100 300
29 20 20 50 50 140

2.10 10 10 25 25 70

1.2. Patch size selection across stages

In the first stage, we design the patch size to ensure the im-
age spectrum can be evenly separated in 4 x4 patches. This
split results in a manageable number of combinations of fre-
quency subsets, facilitating an effective initial coarse explo-
ration of frequencies that contribute significantly to classi-
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Figure 1. Sampled frequency subsets at each stage.

fication. From the second stage onward, the patch size is
halved compared to that of the previous stage. This progres-
sive refinement improves the precision of the frequency sub-
sets explored that contain shortcut information. Examples
of sampled frequency subsets are shown in Fig. 1. The fre-
quency patches progressively decrease in size and the fre-
quency maps become more refined as the search progresses.

1.3. Frequency sampling percentage

At each stage, we sample 60% of the frequency patches.
This uniform sampling ratio allows for investigating fre-
quency shortcuts formed by different percentage of frequen-
cies. For instance, applying DFMs searched at stage 3 al-
lows us to analyze the impact of potential shortcuts that con-
tain approximately 22% of the frequencies on OOD data. In
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Figure 2. Tracking statistics of IN-1k configuration of ResNet18.

subsequent stages, the resulting DFMs indicate around 13%
of the frequencies across full spectrum in stage 4, and about
8% in stage 5.

1.4. Configurations on IN-1k

As IN-1k has 1000 classes, we increase the number of sam-
pled candidates in each stage. We set B1=DBy=DB3=>500,
B4=DB5=1000 and Bg=2000. We run this configuration
three times with random seeds 42, 125 and 666. We track
the lowest loss (averaged over all 1000 classes), calculat-
ing the mean and standard deviation over the three trials.
We show the tracking statistics of ResNet18 in Fig. 2. For
stages 1 and 2, sampling 500 frequency subsets are suffi-
cient as the loss does not decrease significantly as the num-
ber of sampled candidates increases. Starting from stage 3,
although the standard deviations are relatively higher than
the previous stages, the lowest loss does not decrease much
after sampling more frequency subsets. Considering time-
efficiency (around 9 days to run HFSS once), we use this
setup for all ImageNet experiments, with slightly reduced
effectiveness in finding strong shortcuts.

2. Experiment setups

2.1. Datasets

ImageNet-v2 (IN-v2) [5]. This dataset has the same
structure as ImageNet-1k, containing 1000 classes. The
data creation process of IN-v2 is the same as that of IN-1k.
This can evaluate model performance on images collected
in different time points, i.e. generalization to statistical dis-
tribution shifts.

ImageNet-C (IN-C) [3]. It contains 19 types of synthetic
corruption effect, which are Gaussian noise, impulse noise,
shot noise, defocus blur, glass blur, motion blur, zoom blur,
brightness, contrast, elastic transform, jpeg compression,
pixelate, fog, frost, and snow. The dataset contains 19 sub-
sets, each containing IN-1k test images corrupted by one
type of corruption, with five levels of corruption severity.
High severity indicates high strength of corruption applied
to the original test images.

ImageNet-R (IN-R) [4]. It contains images with differ-
ent renditions, such as cartoon, art, graphics, painting, etc.
These allow for a strong model generalizability assessment,
as some abstract renderings exclude important features like
natural textures that models rely on for classification.

ImageNet-S (IN-S) [6]. The dataset contains 1000
classes, each with 50 validation images, the same as IN-
1k. Differently, the images are sketches of objects, which
may have texture information loss.

ImageNet-SCT (IN-SCT) [7]. This OOD dataset is con-
structed to evaluate the impact of frequency shortcuts on
generalization performance. It contains 10 classes, sharing
similar shape or texture characteristics to the 10 classes in
IN-10. Each class has 70 images with seven renditions, e.g.
cartoon, painting, sketch, etc.

2.2. Training

C-10. Models with ResNet [2] architecture are trained for
200 epochs on the C-10 dataset. The initial learning rate is
0.01, reduced by a factor of 10 if the validation loss does
not decrease for 10 epochs. We use SGD optimizer with
momentum 0.9 and weight decay 10~ and batch size 128.

IN-10. Models with ResNet(s) [2] architectures are
trained for 200 epochs. The initial learning rate is 0.01 and
is reduced by a factor of 10 if the validation loss does not
decrease for 10 epochs. We use SGD optimizer with mo-
mentum 0.9 and weight decay 10~* and batch size 16.
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Figure 3. Impact of shortcuts uncovered in (a) the second and (b) the third run on OOD data: average TPR of shortcut and non-shortcut
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classes given different thresholds. In general, models perform better on images of shortcut classes than non-shortcut classes.

IN-1k. We use the pre-trained weights of ResNetl8,

ResNet50 and ViT-b from timm [8] and the weights of CCT
from the official repository [1].

3. Additional results

3.1. IN-1k

Results across multiple runs. We conducted ImageNet
experiments for each model three times, with results from
the additional two trials presented in Figs. 3 and 4.



IN-200 IN-R

1.0

0.5

ResNet18

0.0

ResNet50
o
[9,]

AvgTPR
~ O
o O

CCT

g
g
A

0.25 0.50 0.75 0.25 0.50 0.75

t

—— AvVQTPRst
— AVgTPRnon—sct

—— AvgTPRDIM

sct

—— AvgTPRDFM

non — sct

(a)

IN-200 IN-R
1.0 1
[ce)
—
9]
Z 0.5 -
(0]
o
0.0 . . : ]
1.0 1
o
)
(]
Z 0.5 1
&
& m
'5 0.0 . , - 4 , . -
g 1.0 ]
'_
8 0.5+ ]
0.0 : : :
1.0 1
2
= | i
0.0 . . . R . T :
0.25 0.50 0.75 0.25 0.50 0.75
t
—— AvVQgTPRgt —— AvgTPRDIM
I AVgTPRnon—sct —_— AVgTPREg::’I_Sct

(b)

Figure 4. Impact of shortcuts uncovered in (a) the second and (b) the third run on IN-R: average TPR of shortcut and non-shortcut classes
given different thresholds. In general, models perform worse on images of shortcut classes than non-shortcut classes.

Similar to the findings from the first run, the subse-
quent trials also manage to identify classes influenced by
shortcuts. Models consistently perform better on shortcut-
classes than non-shortcut classes across datasets such as IN-
1k, IN-v2, IN-C and under FGSM attacks but worse on
IN-R. These results align with the observations that mod-
els excel on texture-preserved datasets, as they exploit the
shortcuts present in OOD data. Notably, CCT shows the
strongest tendency toward shortcut learning among the eval-
uated models.

Although the current HFSS configuration applied to Im-
ageNet might overlook some strong shortcuts (see the green
lines of ResNet18 in Fig. 3a), HFSS stably uncovers short-
cuts at low thresholds (weak shortcuts). As our focus is
on the general impact of shortcuts on generalization and ro-
bustness, rather than precise prediction performance on spe-
cific classes, the configuration of HESS provides analyzable
results for such investigation. For more detailed analyses,
one could increase the number of sampling operations By,
allowing a broader evaluation of frequency subset combina-
tions and obtaining more stable search of strong shortcuts.

Results at different stages. We analyze the impact of fre-
quency shortcuts searched in different stages, which corre-
spond to different percentage of frequencies, on the ID and
OOD test sets, as shown in Figs. 5 and 6. Sampling 60%
frequency patches at each stage results in around 22% of
frequencies at stage 3, 13% at stage 4 and 8% at stage 5 of
the full image spectrum.

In Figs. 5a and 6a, we present the average TPR of mod-
els using DFMs obtained at stage 3 (approximately 22% of
frequencies). For shortcut classes, the models achieve per-
formance comparable to that on full-spectrum images. But
for non-shortcut classes, performance is generally worse.
On IN-S and IN-R datasets, models perform slightly better
on shortcut classes than non-shortcut classes at low thresh-
olds. We inspect images filtered by the DFMs from stage
3 and see that retaining only 22% of frequencies results
in minimal visual differences compared to the original im-
ages, aside from some artifacts caused by filtering. As
this retained information is sufficient for classification, most
classes are considered subject to shortcuts at low thresholds.
This explains the slightly higher Average TPR values, par-
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Figure 5. Average TPR of shortcut and non-shortcut classes given different thresholds, using DFMs containing around (a) 22%, (b) 13%

()

and (c) 8% of frequencies. In general, models perform better on images of shortcut classes than non-shortcut classes.
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Figure 6. Average TPR of shortcut and non-shortcut classes given different thresholds on IN-R, using DFMs containing around (a) 22%,
(b) 13% and (c) 8% of frequencies. In general, models perform similarly on images of shortcut classes and non-shortcut classes.

ticularly for AvgTPR@O.1 in CCT (see Fig. 5a), where al-
most no non-shortcut classes remain. Despite this, the per-
formance decline of shortcut classes from IN-1k to In-S and
IN-R is notably more pronounced compared to non-shortcut
classes, showing that reliance on frequency shortcuts does
not aid model generalization. The larger performance drops
on IN-S (compared to the drop on IN-R) can also be at-
tributed to shortcuts such as color-related cues, as IN-S only
contains black-and-white sketches. Similar trends are ob-
served for stages 4 and 5, as shown in Figs. 5 and 6.

Number of classes per stage. Tab. 2 presents the num-
ber of shortcut classes at each stage. As the threshold ¢
increases, the count of shortcut classes declines. Notably,
at stage 6 with ¢ = 0.9, the number drops to 1-3, indicating
that such strong shortcuts are uncommon.

3.2.C-10

We report the test results of ResNet models trained on C-
10 in Tab. 3. All models trained on C-10 learn shortcuts to
classify images in classes airplane and bird. Based on the
threshold value of TPR (0.6), ResNet34 and ResNet50 are
less subject to frequency shortcuts, although they still learn
them, indicating that larger model capacity is not sufficient
to avoid shortcut learning, in line with [7].

The OOD test results of C-10 models are provided
in Tab. 4. Models exhibit close-to or above-average TPR
for classes airliner and humming bird, which is attributable
to the presence of shortcuts in the OOD data.

Table 2. The number of shortcut classes per stage in IN-1k.

t
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Stage

ResNet18
3 993 950 894 792 642 516 317 175 40
4 922 826 701 539 381 276 133 62 9
5 647 445 301 203 111 61 23 12 3
6 343 196 116 60 22 16 7 3 1
ResNet50

997 990 956 904 782 673 469 305 82
4 976 903 792 639 457 339 175 95 12
5 809 604 445 308 174 110 45 18 2
6 421 253 149 78 33 18 5 1 1
C
3 1000 997 989 958 890 820 648 475 166
4 998 985 948 885 755 636 421 256 72
5 973 906 778 622 442 336 152 82 15
6 781 566 408 277 142 88 34 15 3
Vi
3 1000 989 977 930 820 720 518 343 101
4 987 962 900 772 633 491 297 171 33
5 861 674 514 368 225 149 70 25 6
6 520 317 183 110 54 30 7 1 1

Table 3. TPRs on C-10 and DFM-filtered images. TPR>0.6 are
highlighted in bold.

Class
airplane auto bird cat deer dog frog horse  ship truck
Model

ResNet18 0.709  0.581  0.86 0.585  0.679 0.482 0.713 0395 0.675  0.682

ResNet34 0.988 0.183 0935 0.641 0.585 0.538 0393 0 0.203  0.467

ResNet50 0.995 0365 0.858 0.526 0.361 0.432 0251 0259 0338 0.526
3.3.IN-10

We provide the comparison of the results of ResNet50 us-
ing DFMs searched by HFSS and the algorithm in [7]
in Tab. 5. ResNet50 learns strong shortcuts for classes air-
liner, siamese cat, ox, zebra and container ship. Although
it has larger model capacity than ResNet18, HFSS confirms
that it still exploits shortcuts for many classes, in line with



Table 4. TPRs of C-10 models tested on resized IN-10 (first
row of each model) and corresponding DFM-filtered images (sec-
ond row of each model). TPRs higher than or close to aver-
age TPR (ResNet18-0.62, ResNet34-0.62 and ResNet50-0.64) are
highlighted in bold.

Class
\ airliner wagon hum- Siam- ox golden frog zebra Con-  truck
Method bird  cat retriever ship

ResNet18
0.96 0.7 0.62 0.7 0.24 0.74 0.72 0.34 0.82 0.4
1 0.14 0.78 0.64 0.14 0.22 0.18 0.1 0.32 0.14

HFSS

ResNet34
0.96 0.72 0.64 0.82 0.24 0.66 0.68 0.2 0.84 0.48
1

;(FSS 0.08 0.9 0.68 044 0.46 0.28 0 0.18 0.32

ResNet50
- 096 076 0.6 078 028 0.74 074 022 084 044
HFSS 0.98 0.28 0.86 0.48 0.26 0.26 0.32 0.22 0.28 0.32

Table 5. TPR results of ResNet50 on DFM-filtered IN-10 images.
TPR>0.6 (a strong frequency shortcut) is highlighted in bold.

Class
airliner wagon hum- Siam- ox
Method bird  cat retriever ship

golden frog zebra Con-  truck

HFSS 1 0.06 0.3 0.94 0.76 0.46 0.46 0.78 0.82 0.08
| 0.54 0 0 0.42 0 0.2 0 0.16 0.7 0.1

Table 6. Models trained on IN-10 are tested on IN-SCT. TPRs
higher than or close to average TPR (0.374) are highlighted in
bold.

Class
\ Mil- car lorikeet tabby holstein Lab- tree horse fishing fire
Method aircraft cat retriever frog vessel  truck
- 0429 0486 0414 02 0.37 03 0.3 0.057  0.44 0.743
HFSS 0257 0514 05 03 0.372 0.386 0371 0 0.486 0.7
n 0243 0 0.057 0.043 0 0.2 0 0 0.486  0.043

the observation in [7]. By comparing the TPR values on IN-
10 images processed by DFMs obtained through our HFSS
algorithm and through that in [7], our algorithm is more ef-
fective at finding shortcuts (more TPRs are highlighted in
bold).

We report the TPRs of ResNet50 tested on IN-SCT
in Tab. 6. The model achieves higher or close to aver-
age TPR of classes holstein and fishing vessel in IN-SCT,
which is attributable to the shortcuts for classifying classes
ox and container ship in IN-10. Comparing the TPR values
of HFSS and [7], we observe that weak shortcuts for some
classes e.g. frog and golden retriever are still present in the
OOD data, but [7] fails to recognize them, demonstrating
the effectiveness of HFSS in finding shortcuts.

3.4. Visualization of images filtered by DFMs ob-
tained over five trials

Due to random sampling of candidate frequency subsets,
the outcomes of HFSS might deviate slightly for each run.
However, from the visualization of the image filtered by
DFM obtained over five trials, we observe similar texture
shortcuts (see Fig. 7). This indicates that frequency short-
cuts are not formed by a fixed set of frequencies, but corre-
spond to similar spatial patterns.

(©)
(d)

Figure 7. Images of classes (a) airplane, (b) bird, (c) deer and (d)
ship in C-10 filtered by corresponding DFM obtained through five
trials. We normalize the images to a range of O to 1 for visualiza-
tion purpose.
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