Appendix
A. Detailed Experiment Setups

A.1. Implementation Details of FACELoOCK

FACELOCK optimizes perturbation on facial disruption and feature embedding disparity that prevent biometric recognition
post-editing. The pseudocode of FACELOCK is presented in Algorithm 1. More specifically, the facial recognition loss function
frr is defined as the negative of the similarity score between the input images computed by the CVLFACE model', and the
feature disparity loss function frg is computed as the weighted sum of the layer-wise feature embedding distances across the
feature extractor network. As mentioned in Sec 5, we also include the untargeted latent-wise loss from EditShield[2] as a
regularization term to stabilize the protection results. The hyper-parameters used in our implementation are summarized in
Tab. Al.

Algorithm 1 FACELOCK

Input: Input image x, VAE &, D in the diffusion model, step size a, number of steps N, overall perturbation budget €,
regularization weight ), facial recognition loss function frg, feature disparity loss function frg
1: Initialize perturbation  <— N (0, 1), and the protected image x’ + x + &
2: Compute the latent embedding of the input image z « £(x)
3: forn =1to N do
4; Compute the latent embedding of the protected image z’ + £(x’)
Compute the decoded image from the latent embedding x4 < D(z’)
Compute the facial recognition loss lgr < frr(X4, X)
Compute the feature disparity loss lpg < fre (X4, X)
Compute the latent loss (regularization term) Ip, < ||z’ — z]|3
Update the perturbation § < & + a - sign(Vy (Igr + lpg + A - 1))
10: § < clip(d, —¢,¢€)
11: Update the protected image: x’ < x + &
12: end for
Return: The protected image x’
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Table Al. Hyper-parameters used for the implementation.

Norm perturbation budget ¢ step size « number of steps N\
loo 0.02 0.003 100 0.2

A.2. Implementation Details of Baselines

In addition to using previous methods [1, 2] as baselines, we also compare our FACELOCK approach against several widely
used techniques in the adversarial machine learning field. These methods are summarized in Algorithms 2, 3, and 4. To ensure
a fair comparison, we use the same hyper-parameters settings in Tab. Al.

A.3. Image Editing Details

Models. For image editing, we use the open-source instruction-guided diffusion model InstructPix2Pix [9] hosted on Hugging
Face’ as our primary target model. We use the hyper-parameters presented in Tab. A2. We use the same seed setting when
comparing edits on the unprotected images and the images protected by different methods to ensure that the edit images are
are modified in the same way and that the different editing effects are due to the protection methods instead of random seeds.
Dataset. For the human portrait images used in our experiments, we utilize a filtered subset of the CelebA-HQ dataset”,
a high-quality human face attribute dataset widely used in the facial analysis community. The dataset consists of 2,000
human portrait images ensuring diversity across various demographic groups, including race, age, and gender, to enhance

I'The model is available on https:/github.com/mk-minchul/CVLface
2The model is available on https://huggingface.co/timbrooks/instruct-pix2pix
3The dataset is available on https:/www.kaggle.com/datasets/lamsimon/celebahg/data


https://github.com/mk-minchul/CVLface
https://huggingface.co/timbrooks/instruct-pix2pix
https://www.kaggle.com/datasets/lamsimon/celebahq/data

Algorithm 2 Untargeted Encoder Attack

Input: Input image x, VAE £ in the diffusion model, step size o, number of steps N, overall perturbation budget €
1: Initialize perturbation  <— N (0, 1), and the protected image x’ < x + &
2: Compute the latent embedding of the input image z « £(x)

3: forn =1to N do

Compute the latent embedding of the protected image z’ + £(x’)

Compute the latent loss [ < ||z’ — z]|3

Update the perturbation § < § + « - sign(Vy/1)

d + clip(d, —¢, ¢€)

8: Update the protected image x’ + x + &
9: end for
Return: The protected image x’
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Algorithm 3 VAE Attack

Input: Input image x, target image X, VAE £, D in the diffusion model, step size o, number of steps IV, overall perturbation
budget €
1: Initialize perturbation & <— N (0, 1), and the protected image x’ < x + d
2: forn=1to N do
3: Compute the decoded image x4 < D(E(x'))
Compute the loss | < ||xq — Xg]|3
Update the perturbation § < d — « - sign(Vx/1)
d + clip(d, —¢, ¢€)
7: Update the protected image x’ < x + &
8: end for
Return: The protected image x’
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Algorithm 4 CW L, Attack

Input: Inputimage x, VAE & in the diffusion model, step size a, number of steps N, overall perturbation budget €, weight ¢
1: Initialize w < 0
2: Compute the latent embedding of the input image: z < £(x)
3: forn=1to N do
4: Compute the protected image x’ «— 3 (tanh(w) + 1)
5: Compute the latent embedding of the protected image z’ « £(x’)
6
7
8
9

Compute the Ly loss 7, < ||x' — x||3
Compute the latent loss I < —||z’ — z]|3
: Update w < w — o - Vi (I, + ¢+ 1)
: end for
0: Compute § « clip(3 (tanh(w) + 1) — x, —¢, €)
11: Compute the protected image x' < x + &
Return: The protected image x’
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the representativeness of our experiments. For the editing prompts, we manually selected 25 prompts across three categories:
facial feature modification, accessory adjustments, and background alternations. These prompts were specifically selected to
produce noticeable changes across a wide range of images, avoiding those that would fail to affect a certain subset (e.g., “Let
the person wear glasses” will be ineffective for individuals who already wear glasses, which is a significant portion of the
dataset). The specific prompts utilized in our experiments are listed in Tab. A3 for detailed reference.



Table A2. Hyper-parameters used for the image editing process.

image size inference steps image guidance scale text guidance scale

512x512 50 1.5 7.5

Table A3. Editing prompts categorized into facial feature modifications, accessory adjustments, and background alterations.

Category Prompts

® Turn the person’s hair pink; @ Let the person turn bald; & Let the person have a tattoo; @
Let the person wear purple makeup; ® Let the person grow a mustache; ® Turn the person into
a zombie; @ Change the skin color to Avatar blue; ® Add elf-like ears; ® Add large vampire
fangs; @ Apply Goth style makeup.

Facial Feature Modifications

@ Let the person wear a police suit; @ Let the person wear a bowtie; ® Let the person wear a
Accessory Adjustments helmet; @ Let the person wear sunglasses; ® Let the person wear earrings; ® Let the person
smoke a cigar; @ Place a headband in the hair; © Place a tiara on the top of the head.

@ Let it be snowy; ® Change the background to a beach; ® Add a city skyline background;
Background Alterations ® Add a forest background; @ Change the background to a desert; ® Set the background in a
library; @ Let the person stand under the moon;

A.4. Evaluation Metrics

PSNR, SSIM, and LPIPS scores. In our experiments, we compute the PSNR and SSIM scores using the torchmetrics
library”, while the LPIPS score is computed using the Ipips library’. All these three metrics are computed by comparing the
similarity between the edited image without defense and the edited image with defense. A lower similarity score (lower PSNR,
SSIM score and higher LPIPS score) indicates better protection. PSNR and SSIM primarily focus on pixel-level statistical
information, while LPIPS evaluates the similarity of high-level semantic features, capturing perceptual differences that are
more aligned with human visual perception.

CLIP-S score. In the main paper, we utilize the CLIP-S metric to assess the prompt fidelity by computing the similarity
between the image embedding shift and the text embedding in the CLIP embedding space:
(Eedit - Esrc) : Eprompt

CLIP-S = )
HEedil - Esrc” HEpromle

(A1)

where Fj.. denotes the CLIP image embedding of the source image, E..;+ denotes the CLIP image embedding of the edited
image, and Epromp denotes the CLIP text embedding of the prompt instruction. This formulation is particularly suitable for our
experiments because the prompts are designed as instructions describing the expected transformation or modification from the
source image to the edited image.

CLIP-SD score. Following PhotoGuard’s evaluation metric [1], an alternative approach to assess the prompt fidelity is to
compute the cosine similarity directly between the embedding of the edited image and the embedding of the descriptive text
prompt in the CLIP embedding space: Fust - Fae

CLIP-SD = —————, A2
[ Bean ] Bas] (A2

where Eye denotes the CLIP text embedding of the descriptive text prompt. We report the CLIP-SD score for each method
in Tab. A4. From the table, we observe that, except for the VAE method, all defense methods show a worse defense effect
compared to the “No Defense” scenario. This aligns with the analysis presented in Sec 4, where we discussed how CLIP-based
similarity metrics often overemphasize the elements from the prompt, leading to a prioritization of over-editing. To generate
the descriptive text prompts, we leverage ChatGPT based on the prompt instructions provided in Tab. A3.

Table A4. Quantitative evaluation on prompt fidelity using CLIP-SD. The | indicates that a lower CLIP-SD score is preferred for a successful
defense.

Method No Defense  PhotoGuard EditShield Untargeted Encoder CW L2 VAE FACELOCK(ours)
CLIP-SD| 0.27240.029 0.28340.029  0.277+0.027 0.284+0.024 0.277+0.027  0.270+0.029 0.283+0.024

4This library can be installed from https://lightning.ai/docs/torchmetrics/stable/
SThis library can be installed from https:/pypi.org/project/Ipips/


https://lightning.ai/docs/torchmetrics/stable/
https://pypi.org/project/lpips/

CLIP-I score. In the main paper, we utilize the CLIP-I metric to assess the image integrity by computing the similarity
between the edited image embedding and the source image embedding in the CLIP embedding space:
Eedit : Esrc
CLIP-] = ot Zue (A3)
(| Eait]| | e

The CLIP-I metric is used as a general indicator of the preservation effect, providing an overall measure of how similar the
edited image is to the source image in the CLIP embedding space. While this serves as a useful first step in generally evaluating
image integrity, it does not specifically address biometric integrity, which is central to protecting human portrait images.
FR score. In the main paper, we utilize the CVLFACE model to compute the facial recognition similarity score between the
edited and source image to indicate the preservation effect of biometric integrity:

FR = CVLFACE(Iediu [SI‘C)7 (A4)

where I denotes the source image, and .4 denotes the edited image. Unlike other general image similarity metrics, the
CVLFACE model is tailored to assess the consistency of facial features, making it more suitable for evaluating how well the
identity of the person is preserved after the image has been edited. The FR score plays a key role in assessing whether the
protection method effectively disrupts the biometric identity of the person in the image.



B. Additional Experiment Results

B.1. Qualitative Results on Background Alternation

Source Image No Defense PhotoGuard EditShield FaceLock(ours)

Let it be snowy

Change the
background
to a beach

Add a city skyline
background

Add a forest
background

Change the
background
to a desert

Set the background
in a library

Let the person stand
under the moon

Figure A1. Qualitative results of background alternation edits across various defense methods. Images in green frames denote successful
defense.



B.2. Qualitative Results on Accessory Adjustment

Source Image No Defense PhotoGuard EditShield FacelLock(ours)

Let the person
wear a police suit

Let the person
wear a bowtie

Let the person
wear a helmet

Let the person
wear sunglasses

Let the person
wear earrings

Let the person
smoke a cigar

Place a headband
in the hair

Place a tiara on the
top of the head

Figure A2. Qualitative results of accessory adjustment edits across various defense methods. Images in green frames denote successful
defense.



B.3. Qualitative Results on Facial Feature Modification

Source Image No Defense PhotoGuard EditShield FaceLock(ours)

Turn the person's
hair pink

Let the person
turn bald

Let the person
have a tattoo

Let the person
wear purple makeup

Let the person
grow a mustache

Turn the person
into a zombie

Change the skin color
to Avatar blue

Add elf-like ears

Add large vampire
fangs

Apply Goth style
makeup

Figure A3. Qualitative results of facial feature modification edits across various defense methods. Images in green frames denote successful
defense.



B.4. Qualitative Results Against Purification

No Purification Rotate JPEG Blur

PhotoGuard

EditShield

FaceLock(ours)

Figure A4. Qualitative results of edits on protected images after applying purification methods. Each block shows: purified protected
images (1st row), edits with the instruction “Let the person wear a bowtie”, and edits with the instruction “Set the background in a library”.
Purification methods include random rotation (-10, 10), JPEG compression (quality 75), and Gaussian blurring (k = 5,0 = 1.5). Images in
green frames denote successful defense.



B.5. Results on Other Datasets

To further evaluate the effectiveness of FACELOCK, we compare its performance against existing baselines on a subset of the
Flickr-Faces-HQ (FFHQ) dataset[60]. As shown in Tab. A5, FACELOCKachieves the lowest FR score of 0.356, demonstrating
its strong identity protection while maintaining competitive performance across other key metrics.

Table AS. Quantitative evaluation on the FFHQ dataset.

Method CLIP-S|, PSNR| SSIM| LPIPST CLIP-I| FR]
No Defense 0.108 - - - 0.860 0.820
PhotoGuard 0.095 14.76 0.555 0.515 0.681 0.449
EditShield 0.098 18.92 0.532 0.480 0.753 0.633
FACELOCK 0.099 17.02 0.538 0.542 0.680 0.356

B.6. Results on Other Purification Methods

Table A6. Robustness comparison against other purification methods.

LPIPS 1 FR |
Method Color Jitter  DiffPure  Color Jitter  DiffPure
PhotoGuard 0.275 0.311 0.686 0.691
EditShield 0.303 0.316 0.593 0.610
FACELOCK 0.319 0.314 0.371 0.504

Editing Prompt: ‘Set the background in a library’.

Color Jitter w/o Purification

DiffPure

(a) FACELOCK (b) PhotoGuard (c) EditShield

Figure AS. Qualitative results of edits on protected images after applying other purification methods. Images in green frames denote
successful defense.

To further assess the effectiveness of FACELOCK, we evaluate its robustness against other purification techniques, namely
Color Jitter and DiffPure [48]. As presented in Tab. A6, FACELOCKconsistently achieves the lowest FR scores (0.371 and
0.504) across both purification methods, demonstrating its ability to disrupt identity features after purification. While prior



methods primarily interfere with edits, they fail to prevent identity retention post-purification. In contrast, FACELOCK ensures
stronger identity removal while maintaining competitive LPIPS values, reinforcing its effectiveness as a defense mechanism.
Qualitative results in Fig. A5 further supports these findings, showing that FACELOCK more effectively prevents identity
recovery after purification.

B.7. Impact of the FR Model

To analyze the impact of the FR model, we conduct an ablation study comparing protection strength and efficiency with and
without it. As shown in Tab. A7, incorporating the FR model reduces the FR score from 0.534 to 0.316, achieving over 40%
improvement in identity protection. However, this comes with a slight increase in processing time per image (16s — 20s).
Despite the added computational cost, these results highlight the necessity of the FR model for ensuring stronger identity
protection.

Table A7. Quantitative results on the effectiveness and efficiency impact of the FR model.

Setting ‘ Time/Image FR ()

w/o FR Model ~16s 0.534
w/ FR Model ~20s 0.316




