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Supplementary Material

This supplementary material is organized into five sec-
tions: Section A discusses the importance of border sam-
ples in TTA. Section B presents additional experimental re-
sults, including the substitution of human annotators with
large models (Table A), and the robustness of our method
across various backbones (Tables B and C). Section C of-
fers further ablation studies, such as the effects of hyper-
parameter variations (Table D). Section D provides detailed
descriptions of the datasets used, including ImageNet-C, -
A, -R, -K, and PACS. Finally, Section E explains the pre-
training protocol and implementation details of TTA and
ATTA baselines.

A. Importance of Border Samples in TTA
TTA adapts a pre-trained model in real-time based on online
target data with significant domain shifts, which presents
challenges from both noisy labels and efficiency require-
ments. ATTA mitigates the adverse effect of noisy labels by
introducing human/large model annotations of a small set
of samples. However, as we demonstrate in Figure 3, these
samples could be difficult for the model to learn, thereby
hindering adequate adaptation. To address this problem, we
propose to select samples that are both informative and fea-
sible to learn from a single-step optimization perspective.
Specifically, we prefer samples that are distributed at the
border between the source and target domains, as they pro-
vide learnable target domain knowledge and help the model
gradually adapt to the target domain [5, 20].

Furthermore, we provide a toy example to compare two
sampling strategies, where the source model is fine-tuned
with data points (blue stars) that are far from and close to
the source domain, respectively. To this end, we first train
a toy model on red data and test it on green data. We then
select two data points per class in the green data to fine-
tune the pre-trained toy model and visualize the decision
boundary in Figure A.

Figure A. Performance comparisons with two sampling strategies
for model adaptation on a toy example. (a) The initial decision
boundary of the source model. (b) The updated decision boundary
using data points that are relatively far from the source domain. (c)
The updated decision boundary using data points that are relatively
close to the source domain.

As shown in Figure A, the model performs better when
fine-tuned on data points close to the source domain,
achieving 93.10%, compared to 87.07% when fine-tuned on
points far from the source domain. This demonstrate border
samples are the optimal ones to facilitate robust adaptation.

B. More Experimental Results
Replacing Human Annotator with Large Models. This
experiment is an extension of Table 8 of the main paper.
We perform experiments in the fully test-time adaptation
setting and present the results in Table A. SimATTA [10]
shows modest improvements over the baseline where a large
model provides the annotations. However, it underperforms
compared to the baseline where human experts provide an-
notations. In contrast, our method consistently outperforms
the baseline, regardless of whether the annotations come
from human experts or large models. This highlights the
potential of our method to deploy in real-world applications.
Performance across Various Backbones. We provide ex-
perimental results on ImageNet-C for continual and fully
test-time adaptation settings using ResNet-50 with Group-
Norm (Table B) and ViT-B-16 (Table C), respectively.
As shown in Table B, the basic version of our method
(i.e., Ours*) surpasses the baseline by 1.4% and 1.1%
for CTTA and FTTA, respectively. Moreover, under the
same annotation and buffer setting, our method outperforms
SimATTA [10] by 6.3% and 4.4% for CTTA and FTTA, re-
spectively. As shown in Table C, the basic version of our
method surpasses the baseline by 1.9% and 0.4% for CTTA
and FTTA, respectively. Moreover, under the same annota-
tion and buffer setting, our method outperforms SimATTA
by 3.1% and 3.6% for CTTA and FTTA, respectively. This
demonstrates the robustness of our method across various
backbones.

C. More Ablation Studies
All experiments in this section use the ResNet-50 with
BatchNorm as the backbone.
Hyper-Parameters. We discuss the effect of several hyper-
parameter variations and summarize them in Table D: ① the
trade-off parameter α in Eq. 5 of the main paper; ② the
standard deviation level σ in Gaussian noise perturbation.

As shown in Table D ①, omitting this trade-off parameter
α for adjusting the two dynamic weights results in subop-
timal performance (e.g., α = 0), highlighting the effective-
ness of the proposed gradient norm-based debiasing. Fur-
thermore, a larger α leads to a lower average error rate,
highlighting its effectiveness in refining these weights and



Table A. Performance comparisons between different ATTA methods on ImageNet-C for fully test-time adaptation setting (i.e., ‘F’). Except
for Baseline*(GT), all methods adopt the ViT-L-16 model to annotate the selected samples. The Baseline*(GT) adopts ground-truth labels.
“*” and “†” indicate 1 and 3 samples are annotated per batch, respectively. BFS is the buffer size. The best and second-best performances
are highlighted.

Noise Blur Weather Digital

F Methods Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg. Err.

A
ct

iv
e

• Baseline∗(GT) 69.3 67.5 68.1 72.6 70.2 57.7 51.2 52.3 57.7 43.0 33.3 63.0 45.6 42.1 47.7 56.1
• Baseline∗ 73.8 71.4 71.6 74.3 75.3 64.1 59.0 57.1 59.0 46.4 33.8 65.6 51.4 54.0 51.4 60.6
• SimATTA† [10] (BFS = 300) 71.1 68.8 69.9 72.7 75.6 62.4 59.5 56.1 57.4 46.6 33.2 81.7 52.5 47.4 49.3 60.3
• Ours∗ 67.3 65.4 66.1 69.5 70.1 56.8 50.6 50.8 56.0 42.4 32.7 63.7 44.3 40.9 46.2 54.9
• Ours† 66.7 65.1 66.2 69.0 69.5 56.8 50.8 50.7 56.0 42.4 32.7 61.1 44.5 41.3 46.2 54.6
• Ours† (BFS = 300) 66.9 64.9 65.8 68.9 69.0 56.1 51.6 50.7 55.3 42.1 32.4 59.4 44.6 41.8 46.3 54.4

Table B. Performance comparisons on ImageNet-C for continual (i.e., C) and fully (i.e., F) test-time adaptation settings. The backbone is
ResNet-50 with GroupNorm. BFS is the buffer size. The best and second-best performances are highlighted.

Noise Blur Weather Digital

C Methods Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg. Err.

N
on

-A
ct

iv
e • Source 82.0 80.2 82.1 80.3 88.7 78.6 75.1 59.6 52.7 66.4 30.7 63.7 81.4 71.6 47.7 69.4

• TENT [43] 95.1 99.6 99.8 95.6 99.8 99.7 99.7 99.2 99.8 99.8 99.0 99.9 99.9 99.9 99.4 99.1
• CoTTA [47] 89.8 73.8 82.1 87.9 82.9 80.8 76.3 82.1 74.5 73.4 55.0 75.6 78.5 56.1 60.8 76.0
• SAR [32] 71.8 58.2 56.1 83.6 80.0 86.3 96.8 98.9 70.4 50.0 29.6 53.4 86.2 93.7 98.1 74.2
• ETA [31] 64.1 59.3 60.9 77.8 73.7 71.5 62.7 60.5 56.3 52.4 38.1 53.5 60.2 54.4 47.1 59.5

A
ct

iv
e

• Baseline∗ 62.4 53.5 53.9 71.6 64.6 59.4 54.4 51.5 45.4 41.8 29.9 46.7 53.2 43.0 39.1 51.3
• SimATTA† [10] (BFS = 300) 63.0 53.1 52.8 75.1 69.7 64.0 56.9 54.9 45.6 45.6 31.2 48.8 61.1 45.8 39.1 53.8
• Ours∗ 61.7 51.9 52.4 71.8 63.6 58.3 52.2 48.8 43.8 40.2 28.3 45.1 50.8 40.8 37.9 49.9
• Ours† 61.1 50.7 50.6 69.8 63.1 56.6 51.1 47.9 43.1 39.4 27.8 44.2 50.0 40.6 37.0 48.9
• Ours† (BFS = 300) 58.6 49.5 49.7 67.8 60.5 54.9 49.0 46.5 42.2 38.2 27.5 44.3 47.6 39.3 36.6 47.5

Noise Blur Weather Digital

F Methods Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg. Err.

N
on

-A
ct

iv
e • Source 82.0 80.2 82.1 80.3 88.7 78.6 75.1 59.6 52.7 66.4 30.7 63.7 81.4 71.6 47.7 69.4

• TENT [43] 95.1 93.9 94.2 85.2 89.7 77.7 77.8 73.0 65.7 96.8 29.7 57.8 88.6 51.8 45.6 74.8
• CoTTA [47] 97.5 69.0 68.6 84.6 83.7 79.2 72.7 70.9 52.9 96.1 32.5 77.9 83.9 55.6 47.2 71.5
• SAR [32] 71.7 68.8 70.1 81.4 81.3 69.4 69.7 59.0 56.8 95.1 29.3 56.3 82.7 51.3 44.8 65.8
• ETA [31] 63.7 61.7 62.9 72.1 71.7 63.9 61.2 52.1 51.9 45.8 29.4 52.6 58.6 45.0 43.9 55.8

A
ct

iv
e

• Baseline∗ 62.3 60.7 61.5 69.0 71.0 62.1 58.5 48.3 47.2 45.0 27.8 49.7 56.3 43.9 42.0 53.7
• SimATTA†(BFS = 300) [10] 62.2 60.7 61.4 70.5 71.7 63.2 59.2 48.1 46.1 45.0 27.9 51.4 59.0 47.2 42.1 54.4
• Ours∗ 62.2 59.3 61.1 67.8 69.6 60.7 57.7 47.1 46.9 42.1 27.1 48.7 54.4 43.1 41.0 52.6
• Ours† 61.1 58.9 60.0 67.3 69.1 60.1 57.3 46.3 46.5 42.0 27.1 48.4 54.0 42.7 41.0 52.1
• Ours†(BFS = 300) 58.8 56.3 57.2 66.3 65.7 58.1 54.4 44.8 44.7 40.7 26.4 46.7 50.6 40.8 39.3 50.0

Table C. Performance comparisons on ImageNet-C for continual (i.e., C) and fully (i.e., F) test-time adaptation settings. The backbone is
ViT-B-16. BFS is the buffer size. The best and second-best performances are highlighted.

Noise Blur Weather Digital

C Methods Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg. Err.

N
on

-A
ct

iv
e • Source 66.0 66.8 65.0 68.5 74.7 64.0 66.9 57.3 45.0 49.4 28.7 81.8 57.8 60.8 49.9 60.2

• TENT [43] 58.6 54.0 57.8 59.7 77.4 99.7 99.8 99.7 99.9 99.9 99.8 99.9 99.9 99.9 99.9 87.1
• CoTTA [47] 63.5 64.2 70.4 93.8 84.5 85.8 78.6 99.6 99.9 99.9 99.8 99.9 99.9 99.9 99.9 89.3
• SAR [32] 54.9 50.3 52.2 57.7 60.3 60.9 49.6 60.0 48.1 35.0 26.4 43.5 51.7 44.5 35.9 48.7
• ETA [31] 54.2 50.3 52.3 57.5 53.7 50.2 50.8 50.7 47.2 44.4 31.4 57.8 44.6 42.4 41.7 48.6

A
ct

iv
e

• Baseline∗ 55.0 49.4 49.9 54.7 50.3 46.4 46.1 46.9 41.0 39.4 28.2 48.6 41.1 38.3 37.5 44.9
• SimATTA†(BFS = 300) [10] 55.2 49.0 48.9 54.2 50.6 45.4 46.0 46.4 39.1 36.9 26.7 43.7 42.0 38.3 36.6 43.9
• Ours∗ 54.5 48.7 48.7 53.9 49.5 44.1 43.4 46.3 38.8 36.1 26.4 46.0 38.2 34.7 35.2 43.0
• Ours† 53.9 47.5 47.4 52.1 47.8 42.6 42.2 44.0 38.0 34.6 25.6 41.7 37.1 34.1 34.5 41.5
• Ours†(BFS = 300) 53.0 46.7 46.9 50.9 46.8 42.0 40.6 43.0 37.7 33.7 25.6 41.4 36.0 33.6 33.6 40.8

Noise Blur Weather Digital

F Methods Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg. Err.

N
on

-A
ct

iv
e • Source 66.0 66.8 65.0 68.5 74.7 64.0 66.9 57.3 45.0 49.4 28.7 81.8 57.8 60.8 49.9 60.2

• TENT [43] 58.6 56.3 56.8 58.1 61.7 52.3 56.6 72.2 43.5 93.2 26.7 54.5 50.0 41.8 41.7 54.9
• CoTTA [47] 63.0 78.6 71.4 96.3 95.3 97.8 88.5 97.9 94.8 45.9 94.0 98.0 78.1 94.6 50.8 83.0
• SAR [32] 54.9 52.9 53.8 53.4 53.9 46.0 50.4 54.3 40.5 38.3 25.7 55.0 41.4 35.9 37.0 46.2
• ETA [31] 54.2 52.4 53.3 52.6 51.6 45.1 46.1 41.9 40.1 36.0 25.5 46.5 38.7 35.0 36.2 43.7

A
ct

iv
e

• Baseline∗ 55.0 53.0 53.8 53.1 53.1 46.8 48.6 43.7 39.3 35.6 26.0 46.5 40.9 36.8 38.1 44.7
• SimATTA†(BFS = 300) [10] 55.2 53.2 54.0 55.1 54.8 49.1 50.9 44.9 39.6 36.5 26.5 48.1 44.0 39.6 39.1 46.0
• Ours∗ 54.5 52.6 53.6 53.4 53.2 46.2 47.8 43.5 39.4 36.5 25.8 46.4 39.5 35.8 36.9 44.3
• Ours† 53.9 52.0 52.9 52.1 52.4 45.4 47.3 42.3 38.7 35.8 25.4 44.1 39.3 35.5 36.7 43.6
• Ours† (BFS = 300) 53.0 51.1 52.2 51.2 50.2 44.2 45.3 41.1 37.7 34.3 25.0 43.1 37.5 34.5 35.3 42.4



enabling stable model adaptation during long-term distribu-
tion shifts.

As shown in Table D ②, our method yields similar results
when a small standard deviation is applied, indicating that
slight perturbation is sufficient for selecting optimal sam-
ples. Conversely, a large standard deviation could signifi-
cantly alter the model’s predictions for samples that do not
borders between the source- and target-domain data distri-
butions, thereby weakening the discriminative power of our
method.

Table D. Performance comparisons on hyper-parameter variations,
including ① the trade-off parameter α, and ② the standard devia-
tion level σ. The best and second-best performances are high-
lighted.

Variants ImageNet-C ImageNet-R ImageNet-K ImageNet-A Avg. Err.

①

0.0 57.3 52.6 65.5 99.0 68.6
0.2 54.1 51.7 65.1 98.2 67.3
0.4 54.3 51.6 64.5 98.4 67.2
0.6 54.5 51.1 64.7 98.1 67.1
0.8 53.8 51.5 64.3 98.1 66.9

②

0.01 53.8 51.5 64.3 98.1 66.9
0.02 53.7 51.4 64.3 98.3 66.9
0.03 54.1 51.8 64.9 98.5 66.9
0.1 53.8 51.6 64.7 98.1 67.1
1.0 54.6 52.9 66.8 98.0 68.1

D. Dataset Details

ImageNet-C. ImageNet-C [12] is a dataset derived from
the validation set of the original ImageNet with common
corruptions and perturbations, such as ‘Gaussian Noise’,
‘Shot Noise’, ‘Impulse Noise’, ‘Defocus Blur’, ‘Glass
Blur’, ‘Motion Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’,
‘Brightness’, ‘Contrast’, ‘Elastic Transform’, ‘Pixelate’,
and ‘JPEG Compression’. Each corruption type is applied
at five levels of severity, resulting in 50,000 images per cor-
ruption type. Overall, the dataset comprises 750,000 images
across 1,000 classes.
ImageNet-Rendition (R). ImageNet-R [13] is a dataset
with diverse artistic renditions, such as cartoons, paintings,
origami, embroidery, toys, sculptures, and so on. It features
renditions of 200 ImageNet classes, comprising a total of
30,000 images.
ImageNet-Sketch (K). ImageNet-K [45] is a dataset de-
signed to provide sketch-based representations of objects
belonging to the ImageNet database. It consists of hand-
drawn sketches corresponding to 50,000 images from 1,000
different categories in ImageNet.
ImageNet-A. ImageNet-A [14] provides natural adversar-
ial examples that are challenging for models to recognize
correctly while still being visually similar to the original
classes. It contains 7,500 images across 200 categories.
Each category corresponds to a class from the original Ima-
geNet dataset.

PACS. PACS [23] includes a total of 9,991 images across
four domains, such as ‘Photo’, ‘Art Painting’, ‘Cartoon’ and
‘Sketch’. Each domain contains seven categories.

E. More Experimental Details

E.1. Pre-training Protocol on PACS

We employ the ResNet-18 with pre-trained weights, specif-
ically ‘ResNet18 Weights.DEFAULT’ from PyTorch. Fol-
lowing [10] and [11], we fix the statistics in the batch nor-
malization layers in the pre-trained model. We set the batch
size to 32 and train the model for 40 epochs using the Adam
optimizer, with a learning rate of 0.0001 and a weight decay
of 5e-5.

E.2. Implementation Details of TTA and ATTA
Baselines

TENT. For TENT [43], we use the SGD optimizer with
a learning rate of 0.00025 and a momentum of 0.9 on
ImageNet-C, -R, -K, and -A. We use the Adam optimizer
with a learning rate of 0.005 on PACS. The implementation
follows the official code1.
CoTTA. For CoTTA [47], we use the SGD optimizer with a
learning rate of 0.01 and a momentum of 0.9 on ImageNet-
C, -R, -K, and -A. And the restoration factor, exponential
moving average factor, the average probability threshold,
and the augmentation number are set to 0.01, 0.999, 0.1, 32,
respectively. Moreover, we use the Adam optimizer with a
learning rate of 0.01 on PACS. And the restoration factor,
exponential moving average factor, the average probabil-
ity threshold, and the augmentation number are set to 0.01,
0.999, 0.72, 32, respectively. The implementation follows
the official code2.
ETA. For ETA [31], we use the SGD optimizer with a learn-
ing rate of 0.00025 and a momentum of 0.9 on ImageNet-C,
-R, -K, and -A. Moreover, we use the Adam optimizer with
a learning rate of 0.001 on PACS. We set the exponential
moving average factor, the cosine similarity threshold, and
the entropy threshold to 0.9, 0.05, and 0.4 × ln(C), respec-
tively. Here, C is the number of classes. The implementa-
tion follows the official code3.
SAR. For SAR [32], we use the SAM optimizer with a
learning rate of 0.001 and a momentum of 0.9 on ImageNet-
C, -R, -K, and -A. Moreover, we use the Adam optimizer
with a learning rate of 0.001 on PACS. We set the reset fac-
tor, the entropy threshold, and the exponential moving aver-
age factor to 0.2, 0.4 × ln(C), and 0.9, respectively, for all
datasets. The implementation follows the official code4.

1https://github.com/DequanWang/tent
2https://github.com/qinenergy/cotta
3https://github.com/mr-eggplant/EATA
4https://github.com/mr-eggplant/SAR



SimATTA. For SimATTA [10], we employ the SGD opti-
mizer with a learning rate of 0.00025 and a momentum of
0.9 on ImageNet-C, -R, -K, and -A databases. For PACS,
we use the Adam optimizer with a learning rate of 0.005.
The maximum length of anchors is set to 50, and the en-
tropy threshold is set to 0.4× ln(C). This adjustment to the
entropy threshold is necessary because the original thresh-
old is not appropriate for ImageNet-C, leading to subopti-
mal performance. The buffer size is fixed to 300 for fair
comparison. The implementation follows the official code5.
CEMA. For CEMA [6], we employ the SGD optimizer
with a learning rate of 0.00025 and a momentum of 0.9 on
ImageNet-C, -R, -K, and -A databases. And the maximum
entropy threshold, the minimum entropy threshold, and the
decreasing factor are set to 0.4 × ln(C), 0.02 × ln(C), and
1.0, respectively. The buffer size is set to 300 for fair com-
parison. The implementation follows the official code6.
HILTTA. For HILTTA [26], we use the experimental re-
sults reported in the original paper.
Baseline. The Baseline method, which builds on TENT,
randomly selects a specified number of samples from each
online batch for manual annotation and then performs
ATTA using Eq. 2 of the main paper. We employ the SGD
optimizer with a learning rate of 0.00025 and a momentum
of 0.9 on ImageNet-C, -R, -K, and -A databases. We use the
Adam optimizer with a learning rate of 0.005 on PACS.

5https://github.com/divelab/ATTA
6https://github.com/chenyaofo/CEMA


