Effortless Active Labeling for Long-Term Test-Time Adaptation

Supplementary Material

This supplementary material is organized into five sec-
tions: Section A discusses the importance of border sam-
ples in TTA. Section B presents additional experimental re-
sults, including the substitution of human annotators with
large models (Table A), and the robustness of our method
across various backbones (Tables B and C). Section C of-
fers further ablation studies, such as the effects of hyper-
parameter variations (Table D). Section D provides detailed
descriptions of the datasets used, including ImageNet-C, -
A, -R, -K, and PACS. Finally, Section E explains the pre-
training protocol and implementation details of TTA and
ATTA baselines.

A. Importance of Border Samples in TTA

TTA adapts a pre-trained model in real-time based on online
target data with significant domain shifts, which presents
challenges from both noisy labels and efficiency require-
ments. ATTA mitigates the adverse effect of noisy labels by
introducing human/large model annotations of a small set
of samples. However, as we demonstrate in Figure 3, these
samples could be difficult for the model to learn, thereby
hindering adequate adaptation. To address this problem, we
propose to select samples that are both informative and fea-
sible to learn from a single-step optimization perspective.
Specifically, we prefer samples that are distributed at the
border between the source and target domains, as they pro-
vide learnable target domain knowledge and help the model
gradually adapt to the target domain [5, 20].

Furthermore, we provide a toy example to compare two
sampling strategies, where the source model is fine-tuned
with data points (blue stars) that are far from and close to
the source domain, respectively. To this end, we first train
a toy model on red data and test it on green data. We then
select two data points per class in the green data to fine-
tune the pre-trained toy model and visualize the decision
boundary in Figure A.

Figure A. Performance comparisons with two sampling strategies
for model adaptation on a toy example. (a) The initial decision
boundary of the source model. (b) The updated decision boundary
using data points that are relatively far from the source domain. (c)
The updated decision boundary using data points that are relatively
close to the source domain.

As shown in Figure A, the model performs better when
fine-tuned on data points close to the source domain,
achieving 93.10%, compared to 87.07% when fine-tuned on
points far from the source domain. This demonstrate border
samples are the optimal ones to facilitate robust adaptation.

B. More Experimental Results

Replacing Human Annotator with Large Models. This
experiment is an extension of Table 8 of the main paper.
We perform experiments in the fully test-time adaptation
setting and present the results in Table A. SImATTA [10]
shows modest improvements over the baseline where a large
model provides the annotations. However, it underperforms
compared to the baseline where human experts provide an-
notations. In contrast, our method consistently outperforms
the baseline, regardless of whether the annotations come
from human experts or large models. This highlights the
potential of our method to deploy in real-world applications.
Performance across Various Backbones. We provide ex-
perimental results on ImageNet-C for continual and fully
test-time adaptation settings using ResNet-50 with Group-
Norm (Table B) and ViT-B-16 (Table C), respectively.
As shown in Table B, the basic version of our method
(i.e., Ours*) surpasses the baseline by 1.4% and 1.1%
for CTTA and FTTA, respectively. Moreover, under the
same annotation and buffer setting, our method outperforms
SimATTA [10] by 6.3% and 4.4% for CTTA and FTTA, re-
spectively. As shown in Table C, the basic version of our
method surpasses the baseline by 1.9% and 0.4% for CTTA
and FTTA, respectively. Moreover, under the same annota-
tion and buffer setting, our method outperforms SimATTA
by 3.1% and 3.6% for CTTA and FTTA, respectively. This
demonstrates the robustness of our method across various
backbones.

C. More Ablation Studies

All experiments in this section use the ResNet-50 with
BatchNorm as the backbone.
Hyper-Parameters. We discuss the effect of several hyper-
parameter variations and summarize them in Table D: @ the
trade-off parameter « in Eq. 5 of the main paper; @ the
standard deviation level ¢ in Gaussian noise perturbation.
As shown in Table D @, omitting this trade-off parameter
« for adjusting the two dynamic weights results in subop-
timal performance (e.g., & = 0), highlighting the effective-
ness of the proposed gradient norm-based debiasing. Fur-
thermore, a larger « leads to a lower average error rate,
highlighting its effectiveness in refining these weights and



Table A. Performance comparisons between different ATTA methods on ImageNet-C for fully test-time adaptation setting (i.e., ‘F’). Except
for Baseline*(GT), all methods adopt the ViT-L-16 model to annotate the selected samples. The Baseline*(GT) adopts ground-truth labels.
“*” and “t” indicate 1 and 3 samples are annotated per batch, respectively. BFS is the buffer size. The best and second-best performances
are highlighted.

Noise Blur Weather Digital

F ‘ Methods ‘ Gauss.  Shot  Impul. ‘ Defoc. Glass Motion Zoom ‘ Snow Frost Fog Brit. ‘ Contr. Elastic Pixel JPEG | Avg. Err.

o Baseline*(GT) 69.3 675 68.1 72.6 70.2 57.7 512 | 523 577 43.0 333 | 63.0 456 421 477 56.1
ol ® Baseline* 738 714 716 74.3 75.3 64.1 59.0 | 57.1 59.0 464 338 | 656 514 540 514 60.6
Z | ® SimATTAT [10] (BFS =300) | 71.1 68.8 699 72.7 75.6 62.4 59.5 56.1 574 466 332 | 817 52.5 474 493 60.3
& | o Ours* 673 654  66.1 69.5 70.1 56.8 50.6 | 50.8 56.0 424 327 637 44.3 409 46.2 54.9

o Ours' 66.7 65.1 662 69.0 69.5 56.8 508 | 50.7 56.0 424 327 611 4.5 41.3  46.2 54.6

o Ours™ (BFS = 300) 669 649 658 68.9 69.0 56.1 516 | 50.7 553 421 324 594 446 418 463 54.4

Table B. Performance comparisons on ImageNet-C for continual (i.e., C) and fully (i.e., F) test-time adaptation settings. The backbone is
ResNet-50 with GroupNorm. BFS is the buffer size. The best and second-best performances are highlighted.

Noise Blur ‘Weather Digital
C ‘ Methods ‘ Gauss. Shot Impul. ‘ Defoc. Glass Motion Zoom ‘ Snow Frost Fog Brit. ‘ Contr. Elastic Pixel JPEG ‘ Avg. Err.
o Source 82.0 802 821 80.3 88.7 78.6 75.1 59.6 527 664 30.7 | 63.7 81.4 71.6 477 69.4
‘5 | @ TENT [43] 95.1 99.6  99.8 95.6 99.8 99.7 99.7 99.2 998 998 99.0 | 99.9 99.9 99.9 994 99.1
< | @ CoTTA [47] 89.8 738 821 87.9 82.9 80.8 76.3 82.1 745 734 550 | 756 78.5 56.1  60.8 76.0
é e SAR [32] 718 582  56.1 83.6 80.0 86.3 96.8 989 704 500 296 | 534 86.2 937 98.1 74.2
e ETA [31] 64.1 593 609 77.8 73.7 71.5 62.7 60.5 563 524 38.1 53.5 60.2 544 47.1 59.5
® Baseline™ 624 535 539 71.6 64.6 59.4 54.4 51.5 454 418 299 | 467 53.2 43.0 39.1 51.3
Qe SimATTA' [10] (BFS =300) | 63.0 531 528 75.1 69.7 64.0 56.9 549 456 456 312 | 4838 61.1 458  39.1 53.8
5 | e Ours* 61.7 519 524 71.8 63.6 58.3 522 488 438 402 283 | 45.1 50.8 40.8 379 49.9
< | o Ours 611 507 506 | 698  63.1 566 511 479 431 394 278 | 442 500 406 37.0 48.9
o Ourst (BFS = 300) 58.6 495 497 67.8 60.5 54.9 490 465 422 382 275 | 443 476 393 36.6 47.5
Noise Blur Weather Digital
F ‘ Methods ‘ Gauss.  Shot Impul. ‘ Defoc. Glass Motion Zoom ‘ Snow Frost Fog Brit. ‘ Contr. Elastic Pixel JPEG ‘ Avg. Err.
o Source 82.0 802  82.1 80.3 88.7 78.6 75.1 59.6 527 664 30.7 | 63.7 81.4 71.6 477 69.4
‘5 | @ TENT [43] 95.1 939 942 85.2 89.7 71.7 77.8 73.0 657 96.8 29.7 | 578 88.6 51.8 456 74.8
< | @ CoTTA [47] 975 69.0 68.6 84.6 83.7 79.2 721 709 529 96.1 325 | 779 83.9 556 472 71.5
é e SAR [32] 717 688  70.1 81.4 81.3 69.4 69.7 59.0 568 951 293 | 56.3 82.7 513 448 65.8
e ETA [31] 63.7 617 629 72.1 71.7 63.9 61.2 52.1 519 458 294 | 526 58.6 450 439 55.8
e Baseline® 623  60.7 615 69.0 71.0 62.1 58.5 483 472 450 278 | 49.7 56.3 439 420 53.7
Qe SimATTAT(BFS = 300)[10] | 622 607 614 70.5 71.7 63.2 59.2 | 481 461 450 279 | 514 59.0 472 421 54.4
5 eOurs* 622 593 6l.1 67.8 69.6 60.7 57.7 47.1 469 421 27.1 | 487 54.4 43.1 410 52.6
< o Ourst 61.1 589  60.0 67.3 69.1 60.1 57.3 46.3 465 42.0 27.1 | 484 54.0 427 410 52.1
o Ours'(BFS = 300) 588 563 572 66.3 65.7 58.1 544 | 448 447 40.7 264 | 46.7 50.6 408 393 50.0

Table C. Performance comparisons on ImageNet-C for continual (i.e., C) and fully (i.e., F) test-time adaptation settings. The backbone is
ViT-B-16. BFS is the buffer size. The best and second-best performances are highlighted.

Noise Blur Weather Digital
C ‘ Methods ‘ Gauss. Shot Impul. ‘ Defoc. Glass Motion Zoom ‘ Snow Frost Fog Brit. ‘ Contr. Elastic Pixel JPEG ‘ Avg. Err.
o Source 66.0 66.8 650 68.5 74.7 64.0 669 | 573 450 494 287 | 818 578 608 499 60.2
‘5 | @« TENT [43] 586 540 578 59.7 77.4 99.7 99.8 | 99.7 999 999 99.8 | 99.9 99.9 999 999 87.1
< | e CoTTA [47] 635 642 704 93.8 84.5 85.8 786 | 99.6 999 999 99.8 | 99.9 99.9 999 999 89.3
é e SAR [32] 549 503 522 57.7 60.3 60.9 49.6 | 600 48.1 350 264 | 435 51.7 445 359 48.7
e ETA [31] 542 503 523 57.5 53.7 50.2 50.8 | 50.7 472 444 314 | 578 446 424 417 48.6
® Baseline™ 550 494 499 54.7 50.3 46.4 46.1 469 41.0 394 282 | 48.6 41.1 383 375 449
Qe SImATTAT(BFS = 300) [10] | 552 49.0 489 54.2 50.6 45.4 46.0 | 464 39.1 369 267 | 437 420 383 36.6 439
5 | e Ours* 545 487 487 53.9 49.5 44.1 434 463 388 36.1 264 | 46.0 382 347 352 43.0
< | o Oursf 539 475 474 | 521 478 426 422 440 380 346 256 | 417 371 341 345 4L.5
o OursT(BFS = 300) 53.0 46.7 469 50.9 46.8 42.0 40.6  43.0 37.7 337 256 | 414 36.0 336 336 40.8
Noise Blur ‘Weather Digital
F ‘ Methods ‘ Gauss.  Shot Impul. ‘ Defoc. Glass Motion Zoom ‘ Snow Frost Fog Brit. ‘ Contr. Elastic Pixel JPEG ‘ Avg. Err.
o | * Source 66.0 668  65.0 68.5 74.7 64.0 669 | 573 450 494 287 | 818 578 608 499 60.2
‘5 | e TENT [43] 586 563 568 58.1 61.7 523 56.6 | 722 435 932 267 | 545 50.0 418 417 54.9
< | @ CoTTA [47] 63.0 786 714 96.3 95.3 97.8 885 | 979 948 459 94.0 | 98.0 78.1 94.6 508 83.0
Zg e SAR [32] 549 529 538 534 53.9 46.0 504 | 543 405 383 257 | 550 414 359 370 46.2
o ETA [31] 542 524 533 52.6 51.6 45.1 46.1 419 401 36.0 255 | 465 387 350 362 43.7
® Baseline™ 550 53.0 5338 53.1 53.1 46.8 48.6 | 437 393 356 260 | 465 409 368 381 44.7
Qe SImATTAT(BFS = 300) [10] | 552 532 540 55.1 54.8 49.1 509 | 449 39.6 365 265 | 48.1 440 396 39.1 46.0
5 eOurs* 545 526 53.6 534 532 46.2 478 | 435 394 365 258 | 464 395 358 369 44.3
< e Ourst 539 520 529 | 521 524 454 473 | 423 387 358 254 | 441 393 355 367 43.6
o Ours’ (BFS = 300) 53.0 511 522 51.2 50.2 4.2 453 | 411 377 343 250 | 431 375 345 353 424




enabling stable model adaptation during long-term distribu-
tion shifts.

As shown in Table D @, our method yields similar results
when a small standard deviation is applied, indicating that
slight perturbation is sufficient for selecting optimal sam-
ples. Conversely, a large standard deviation could signifi-
cantly alter the model’s predictions for samples that do not
borders between the source- and target-domain data distri-
butions, thereby weakening the discriminative power of our
method.

Table D. Performance comparisons on hyper-parameter variations,
including @ the trade-off parameter o, and @ the standard devia-
tion level o. The best and second-best performances are high-
lighted.

‘Variants ‘ ImageNet-C = ImageNet-R  ImageNet-K  ImageNet-A  Avg. Err.

0.0 57.3 52.6 65.5 99.0 68.6
0.2 54.1 51.7 65.1 98.2 67.3
® 0.4 543 51.6 64.5 98.4 67.2
0.6 54.5 51.1 64.7 98.1 67.1
0.8 53.8 51.5 64.3 98.1 66.9
0.01 538 51.5 64.3 98.1 66.9
0.02 53.7 514 64.3 98.3 66.9
@ 0.03 54.1 51.8 64.9 98.5 66.9
0.1 53.8 51.6 64.7 98.1 67.1
1.0 54.6 52.9 66.8 98.0 68.1
D. Dataset Details

ImageNet-C. ImageNet-C [12] is a dataset derived from
the validation set of the original ImageNet with common
corruptions and perturbations, such as ‘Gaussian Noise’,
‘Shot Noise’, ‘Impulse Noise’, ‘Defocus Blur’, ‘Glass
Blur’, ‘Motion Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’,
‘Brightness’, ‘Contrast’, ‘Elastic Transform’, ‘Pixelate’,
and ‘JPEG Compression’. Each corruption type is applied
at five levels of severity, resulting in 50,000 images per cor-
ruption type. Overall, the dataset comprises 750,000 images
across 1,000 classes.

ImageNet-Rendition (R). ImageNet-R [13] is a dataset
with diverse artistic renditions, such as cartoons, paintings,
origami, embroidery, toys, sculptures, and so on. It features
renditions of 200 ImageNet classes, comprising a total of
30,000 images.

ImageNet-Sketch (K). ImageNet-K [45] is a dataset de-
signed to provide sketch-based representations of objects
belonging to the ImageNet database. It consists of hand-
drawn sketches corresponding to 50,000 images from 1,000
different categories in ImageNet.

ImageNet-A. ImageNet-A [14] provides natural adversar-
ial examples that are challenging for models to recognize
correctly while still being visually similar to the original
classes. It contains 7,500 images across 200 categories.
Each category corresponds to a class from the original Ima-
geNet dataset.

PACS. PACS [23] includes a total of 9,991 images across
four domains, such as ‘Photo’, ‘Art Painting’, ‘Cartoon’ and
‘Sketch’. Each domain contains seven categories.

E. More Experimental Details
E.1. Pre-training Protocol on PACS

We employ the ResNet-18 with pre-trained weights, specif-
ically ‘ResNetl18_Weights. DEFAULT’ from PyTorch. Fol-
lowing [10] and [11], we fix the statistics in the batch nor-
malization layers in the pre-trained model. We set the batch
size to 32 and train the model for 40 epochs using the Adam
optimizer, with a learning rate of 0.0001 and a weight decay
of 5e-5.

E.2. Implementation Details of TTA and ATTA
Baselines

TENT. For TENT [43], we use the SGD optimizer with
a learning rate of 0.00025 and a momentum of 0.9 on
ImageNet-C, -R, -K, and -A. We use the Adam optimizer
with a learning rate of 0.005 on PACS. The implementation
follows the official code'.

CoTTA. For CoTTA [47], we use the SGD optimizer with a
learning rate of 0.01 and a momentum of 0.9 on ImageNet-
C, -R, -K, and -A. And the restoration factor, exponential
moving average factor, the average probability threshold,
and the augmentation number are set to 0.01, 0.999, 0.1, 32,
respectively. Moreover, we use the Adam optimizer with a
learning rate of 0.01 on PACS. And the restoration factor,
exponential moving average factor, the average probabil-
ity threshold, and the augmentation number are set to 0.01,
0.999, 0.72, 32, respectively. The implementation follows
the official code”.

ETA. For ETA [31], we use the SGD optimizer with a learn-
ing rate of 0.00025 and a momentum of 0.9 on ImageNet-C,
-R, -K, and -A. Moreover, we use the Adam optimizer with
a learning rate of 0.001 on PACS. We set the exponential
moving average factor, the cosine similarity threshold, and
the entropy threshold to 0.9, 0.05, and 0.4 x In(C), respec-
tively. Here, C is the number of classes. The implementa-
tion follows the official code”.

SAR. For SAR [32], we use the SAM optimizer with a
learning rate of 0.001 and a momentum of 0.9 on ImageNet-
C, -R, -K, and -A. Moreover, we use the Adam optimizer
with a learning rate of 0.001 on PACS. We set the reset fac-
tor, the entropy threshold, and the exponential moving aver-
age factor to 0.2, 0.4 x In(C), and 0.9, respectively, for all
datasets. The implementation follows the official code®.

Thttps://github.com/DequanWang/tent
Zhttps://github.com/ginenergy/cotta
3https://github.com/mr-eggplant/EATA
“https://github.com/mr-eggplant/SAR



SimATTA. For SimATTA [10], we employ the SGD opti-
mizer with a learning rate of 0.00025 and a momentum of
0.9 on ImageNet-C, -R, -K, and -A databases. For PACS,
we use the Adam optimizer with a learning rate of 0.005.
The maximum length of anchors is set to 50, and the en-
tropy threshold is set to 0.4 x In(C). This adjustment to the
entropy threshold is necessary because the original thresh-
old is not appropriate for ImageNet-C, leading to subopti-
mal performance. The buffer size is fixed to 300 for fair
comparison. The implementation follows the official code”.
CEMA. For CEMA [6], we employ the SGD optimizer
with a learning rate of 0.00025 and a momentum of 0.9 on
ImageNet-C, -R, -K, and -A databases. And the maximum
entropy threshold, the minimum entropy threshold, and the
decreasing factor are set to 0.4 x In(C), 0.02 x In(C), and
1.0, respectively. The buffer size is set to 300 for fair com-
parison. The implementation follows the official code®.
HILTTA. For HILTTA [26], we use the experimental re-
sults reported in the original paper.

Baseline. The Baseline method, which builds on TENT,
randomly selects a specified number of samples from each
online batch for manual annotation and then performs
ATTA using Eq. 2 of the main paper. We employ the SGD
optimizer with a learning rate of 0.00025 and a momentum
of 0.9 on ImageNet-C, -R, -K, and -A databases. We use the
Adam optimizer with a learning rate of 0.005 on PACS.

Shttps://github.com/divelab/ATTA
Shttps://github.com/chenyaofo/CEMA



