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Supplementary Material

6. Implementation Details

In this section, we describe the implementation details of
our method.

6.1. Part-Aware VQ-VAE
6.1.1. Network Structure

We first introduce the network structure of the encoder &£ for
each human body part. For each joint encoder, we utilize a
codebook containing 4096 code vectors, each with a dimen-
sion of 64. The input human motion for a specific body part
is J, e RT*D where T represents the motion length and D
denotes the dimension of HumanML3D [16] representation.
The input first traverses through a 1D convolutional layer
(kernel size=3, stride=1, padding=1), followed by a ReLU
activation function, producing a feature with 512 channels.

The motion feature then passes through two down-
sampling blocks. Each down-sampling block comprises a
1D convolutional layer (kernel size=4, stride=2, padding=1)
and three Resnet blocks. A Resnet block consists of a
sequential structure: a convolutional layer, followed by a
ReLU activation function, and another convolutional layer.
The output from this sequence is combined with the input
through addition to form the Resnet block’s output.

A final 1D convolutional layer (kernel size=3, stride=1,
padding=1) is applied to generate the feature Q); € RT'*d
where d equals 64 (matching the code dimension) and 7" =
T /4. Before quantization, the encoded feature undergoes
normalization. The full-body latent code Q; is constructed
by combining the quantized codes from all six joint en-
coders.

The decoder mirrors the encoder’s architecture, with one
key modification: convolutional layers having stride=2 are
replaced with upsampling layers using nearest neighbor in-
terpolation. This process finally yields the reconstructed hu-
man motion jrecon.

6.1.2. Training Details

For training the part-aware VQ-VAE, we use standard loss
terms including quantization, commitment, and reconstruc-
tion losses.
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where (3 is a balancing term, sg[-] denotes the stop-gradient
operator. During training, we employ the Adam opti-
mizer [32] with a batch size of 128 and a learning rate of
1x107%,

6.2. Multi-Modal Encoder

6.2.1. Network Structure

In implementing the masked trajectory transformer, we uti-
lize a pre-trained CLIP-ViT-B/32 [53] model to extract fea-
tures from the egocentric image and motion description.
The IMU signals (A, R) are grouped into single feature to-
kens, with each token spanning 4 time steps. We do this
grouping since it aligns with our downsampling rate of 4 in
the part-based VQ-VAE framework. Each token transforms
into a 512-dimensional feature through a linear projection
layer.

The image features, motion description features, and
IMU tokens are then concatenated and processed through
a 4-layer transformer encoder to obtain the latent space rep-
resentation. In each transformer encoder layer, the attention
head number is 4, the dimension of the feed-forward net-
work is 2048, and the dropout rate is 0.1. Subsequently,
a 3-layer transformer encoder transforms this latent space
into a sequence of logits. In each transformer encoder layer,
the attention head number is 4, the dimension of the feed-
forward layer is 1024 and the dropout rate is 0.1. We em-
ploy GumbelSoftmax [24] to convert these logits into mo-
tion code indices d; for each possible IMU location i. The
final motion features Qi are obtained by selecting from the
corresponding VQ-VAE codebook C;;.

6.2.2. Training Details

For training the multi-modal encoder, we optimize the en-
coder network while keeping the VQ-VAE decoder and
CLIP [53] model frozen. The network is trained for 25
epochs using the Adam optimizer [32] with a learning rate
of 1 x 10~* and a batch size of 128. During training, the
weighting parameter A in Eq. (1) is set to 0.001.

6.2.3. Optimization Details

In the energy function Eq. (2) in Sec. 3.2.2, we set the
weights A\, = 0.01, and A\, = 1, respectively. We
use smaller weights for the IMU accelerations since they
are noisy. During the run-time optimization stage, we
first freeze the VQ-VAE decoder D and then optimize the
VQ-VAE latent vector () by employing the L-BFGS [38]
method with a learning rate of 1 and a convergence toler-
ance of 1 x 1076, The optimization process runs for a max-



Setups

IMUPoser [46]

Egodo-IMU Egodo
MPIJPE PA-MPJPE MPIJPE PA-MPJPE MPJPE PA-MPJPE
85.45 123.8 72.60 99.68
73.73 98.78 65.06 86.94
71.44 93.26 65.00 83.84
68.62 92.27 65.90 84.56
82.59 118.5 67.05 92.75
76.20 107.4 64.80 88.19
67.41 94.05 62.18 84.73
62.16 83.09 59.66 82.25
63.73 86.36 57.48 77.36
65.07 86.71 60.12 81.98
58.49 77.98 58.95 79.17
73.02 110.4 64.38 90.74
68.42 101.9 59.78 82.73
59.01 82.62 53.25 74.61
56.96 80.71 54.10 77.05
74.18 97.54 69.37 91.18
69.48 92.30 66.08 88.33
75.01 110.2 69.21 97.98
73.65 106.8 64.69 91.40
63.34 90.16 61.73 84.58
64.24 88.39 58.81 78.35
65.51 88.67 57.89 78.87
64.18 88.72 60.28 82.38
65.19 88.46 58.89 80.82

H 90.34 152.5
LP 73.65 103.6
LP+H 69.05 97.02
LP+RP 66.08 94.27
LW 84.80 126.9
LW+H 79.27 138.3
LW+LP 66.05 95.31
LW+LP+H 63.12 92.06
LW+LP+RP 65.63 100.2
LW+RP 73.21 100.1
LW+RP+H 67.66 100.1
LW+RW 71.74 117.1
LW+RW+H 68.32 105.0
LW+RW+LP  67.93 99.80
LW+RW+RP  79.26 121.6
RP 77.55 97.16
RP+H 76.66 104.6
RW 76.01 117.3
RW+H 79.06 115.7
RW+LP 67.06 95.73
RW+LP+H 65.12 98.58
RW+LP+RP 70.46 105.9
RW+RP 65.37 93.78
RW+RP+H 67.24 100.1

Table 5. Result of the IMU-based human motion capture on the Nymeria Dataset under different IMU setups. H, LP, RP, LW, and RW
indicate the IMU located on different body parts. H: head, LP: left hip, RP: right hip, LW: left wrist, RW: right wrist. The results are shown

in millimeters.

imum of 1,000 iterations, maintains a history size of 200,
and utilizes the strong Wolfe [48] conditions for line search.

6.3. Training Details of Multi-Modal LLM for Mo-
tion Understanding

During the pre-training phase, we train only the motion em-
bedding layer E/5; while keeping all other modules frozen.
The embedding layer is trained for 1 epoch using the Adam
optimizer with a learning rate of 1 x 10~2 and a batch size
of 16. In the multi-modal fine-tuning phase, we keep the
CLIP model and multi-modal encoder frozen while fine-
tuning both the image and motion embedding layers along
with the large language model. We employ LoRA [22] with
a rank of 128 and an alpha value of 256. The language
model is fine-tuned for 4 epochs using the Adam optimizer
with a learning rate of 2 x 10~° and a batch size of 16.

7. Results on Different IMU Setups

In this section, we present results for human motion cap-
ture across different IMU configurations in Table 5. The
intuitive results can be seen in Figure 5.

From the results, we observe that human motion capture
accuracy decreases when fewer IMU inputs are used. This
is expected, as a lower number of IMUs provide less infor-
mation, leading to greater ambiguity in the motion capture
process.

Additionally, we find that using lower-body IMUs gen-
erally leads to higher motion capture accuracy compared to
upper-body IMUs, a trend that is particularly evident in the
Ego4o-IMU results. A possible explanation is that lower-
body movements provide essential kinematic constraints for
motion analysis, such as differentiating between standing
and sitting postures—something a wrist-mounted IMU, for
instance, cannot reliably capture. However, this pattern is
less observed in the Ego4o method, likely because the text-
based motion descriptions and egocentric image inputs pro-
vide contextual motion cues, enabling the model to infer
postural states (e.g., standing or sitting) more effectively,
thereby reducing reliance on IMU data alone.



Setups w/o optim only gt text only image w/ gen text image & gen text
MPIPE PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE MPIJPE PA-MPJPE
H 99.69 72.60 95.09 70.52 106.62 78.69 104.92 75.24 96.53 71.56
LP 86.02 65.11 94.56 70.67 92.82 73.83 91.60 69.34 89.30 66.33
LP+H 85.92 65.10 84.66 67.52 87.47 67.50 85.93 65.49 86.41 66.64
LP+RP 85.59 65.95 87.82 66.25 88.50 66.87 87.41 66.43 92.53 67.57
Lw 93.76 67.06 98.22 69.93 105.46 72.68 99.22 69.62 102.66 72.69
LW+H 89.24 66.81 84.50 61.30 96.04 67.86 96.04 69.23 90.30 64.79
LW+LP 85.73 64.21 86.83 65.24 88.02 63.25 83.79 61.25 82.68 61.52
LW+LP+H 83.25 61.76 78.71 56.10 83.20 61.32 81.27 61.88 84.40 62.98
LW+LP+RP 78.45 59.53 76.78 57.25 80.98 61.06 81.55 62.33 79.40 58.54
LW+RP 83.03 62.19 82.08 61.53 88.56 65.89 89.21 69.14 84.13 63.20
LW+RP+H 80.18 61.04 79.53 58.29 86.23 63.73 78.52 58.45 80.57 60.19
LW+RW 91.78 66.39 86.97 60.79 100.60 70.83 97.83 66.98 95.32 66.37
LW+RW+H 83.75 61.86 85.38 59.33 88.71 62.52 85.05 59.64 87.50 62.34
LW+RW+LP  75.67 55.33 86.49 61.75 83.67 59.28 81.56 59.34 79.21 57.23
LW+RW+RP  78.08 56.14 82.35 58.28 83.31 56.80 82.68 56.54 79.83 57.62
RP 92.25 71.45 95.32 73.19 91.01 68.26 87.94 66.35 88.91 69.01
RP+H 89.33 68.12 84.98 64.51 84.52 64.21 90.82 69.30 83.56 65.76
RW 99.01 71.26 97.44 69.03 112.56 74.99 103.29 72.26 104.32 71.15
RW+H 92.42 66.75 95.17 66.01 99.42 69.64 90.04 64.11 94.27 66.67
RW+LP 85.64 63.77 80.35 59.87 91.61 65.31 90.86 66.36 81.71 60.36
RW+LP+H 79.42 60.85 79.57 57.55 85.03 64.21 74.61 56.42 83.25 59.26
RW+LP+RP 79.90 59.93 77.60 57.26 83.17 59.37 84.70 60.58 78.54 56.40
RW+RP 83.42 62.29 86.20 62.59 86.47 63.91 88.75 64.07 82.57 61.11
RW+RP+H 81.84 60.93 82.52 60.57 86.44 62.98 84.56 60.68 80.13 58.59

Table 6. Ablation study of the IMU-based human motion capture on the Nymeria Dataset under different IMU setups. H, LP, RP, LW, and
RW indicate the IMU located on different body parts. H: head, LP: left hip, RP: right hip, LW: left wrist, RW: right wrist. The results are
shown in millimeters.

8. Ablation Study on Different IMU Setups and ROUGE-L [37]. BLEU measures the precision of n-
gram matches between generated and reference texts, in-
dicating how well the generated descriptions align with

ground truth at the phrase level. BERT score leverages pre-

In this section, we present ablation study results for human
motion capture across different IMU configurations in Ta-

ble 6.

9. Evaluation Metrics

We evaluate our method using three standard metrics for
human motion capture accuracy: Mean Per Joint Position
Error (MPJPE), Procrustes-aligned Mean Per Joint Position
Error (PA-MPJPE) and Jitter. MPJPE measures the aver-
age Euclidean distance between predicted and ground truth
joint positions. To compute PA-MPJPE, we first perform
rigid alignment of the predicted pose to the ground truth us-
ing Procrustes analysis [31], then calculate the MPJPE. The
Procrustes alignment helps evaluate pose accuracy indepen-
dent of global position and orientation. Jitter [13] quantifies
motion smoothness by measuring the mean jerk (third-time
derivative of position) of all body joints in global space, ex-
pressed in km /s>

We evaluate our method with three metrics for mo-
tion description accuracy: BERT score [82], BLEU [49],

trained BERT embeddings to compute semantic similarity
between generated and reference descriptions, providing a
more contextually-aware evaluation than traditional n-gram
based metrics. ROUGE-L computes the longest common
subsequence between generated and reference descriptions,
capturing the fluency and sequential consistency of the gen-
erated text.

In our experiments, we employ the Python “evaluate”
package from the Huggingface to compute BERT, BLEU,
and ROUGE-L scores. For the BERT score calculation,
we enable IDF weighting and rescale with baseline, setting
both parameters to “True”.

10. w/o Part-Aware VQ-VAE

In this section, we evaluate the effectiveness of our part-
aware VQ-VAE by comparing its reconstruction accuracy
with that of the traditional VQ-VAE.



Figure 7. Failure Case. Left: input image; Right: output human
body pose. Red skeleton is the ground truth pose.

Our part-aware VQ-VAE achieves a Mean Per Joint Po-
sition Error (MPJPE) of 44.93 mm and a Procrustes-aligned
MPJPE (PA-MPJPE) of 32.72 mm. In contrast, the tra-
ditional VQ-VAE yields higher errors with an MPJPE of
47.73 mm and a PA-MPJPE of 36.71 mm. These results
demonstrate that our part-aware approach reduces the re-
construction error, indicating superior performance in pre-
serving motion details and overall pose structure.

11. Comparison with HMD-Poser

A direct comparison between our Ego4o method and HMD-
Poser [7] would be unfair, as Ego4o supports an arbitrary
number of IMUs and multi-modal inputs (e.g., text and im-
ages), whereas HMD-Poser relies on fixed 6DoF head and
hand tracking data and cannot handle multi-modal inputs.
Nonetheless, we retrained HMD-Poser and evaluated it on
the DIP-IMU dataset under our experimental setup. The
results—87.6 mm MPIJPE, 66.9 mm PA-MPJPE, and 0.12
km/s? jitter—are inferior to ours.

12. Failure Case

Since IMUs track acceleration rather than position, our
method may fail when the body remains still and the image
lacks contextual information. This is shown in Figure 7,
where the upper body and feet predictions are incorrect.

13. Efficiency and Resource Utilization

Our framework demonstrates real-time performance and
low memory consumption across tasks:

¢ Motion Capture Model
— Single image: 8.2 ms/frame inference speed, 0.90 G
GPU memory
— 10 images: 8.6 ms/frame (+4.9% latency), 0.92G
memory (42.2% usage)
* Motion Description Generation Model
— Single image: 37.3 ms/token inference speed, 16.05 G
GPU memory

- 10 images: 38.6 ms/token (+3.5% latency), 16.07 G
memory (+0.1% usage)

Both components show stable computational costs under
increased input scales (1—10 images), demonstrating min-
imal computational overhead when scaling to multi-image
inputs.
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