
1. VQA Generation Pipeline

1.1. Scenario Aggregation from Multiple Sources

Scene collection of nuScenes dataset. To collect
nuScenes scenarios with the original observations
(nuScenes-real), we use the Python implementation of
nuscenes-devkit [1] to explore traffic scenarios. Follow-
ing the naming paradigm provided in the official nuScenes
documentation, for each sample in a scene, we extract
its CAM FRONT sampled data. At this point, we can
associate a recorded keyframe with its image observation.
In the first filtering process, if an object is annotated with
than a “3” level of visibility or is scanned by less than
five rays of Lidar, then it is considered ”invisible,” and its
information will not be recorded. However, this first pass
doesn’t consider visual occlusion since the visibility of
objects is annotated on the scene level instead of the frame
level in nuScenes. Therefore, a second filtering pass is
instigated. The nuscenes-devkit provides API to project
3D bounding boxes(8 vertices) of objects onto the 2D
image observations, and we create the maximum enclosing
2D filled bounding boxes of the 8 vertices. Then, these
filled rectangles are painted onto a black image following
the distance order of objects to mimic the process of
z-buffering, and boxes of distant objects will be overlayed
by closer objects. Finally, we filter out objects with less
than 50% of their 2D boxes visible in the composed
image, completing the second filtering pass. The third and
last filtering pass removes miscellaneous objects such as
debris and vegetation from objects of interest. After
these three filtering stages, the interested objects set will
have the information mentioned in the color box to the
right recorded. Notably, the nuScenes dataset doesn’t have
the “color” annotation, and we leave this field empty while
collecting the scenarios.

Scene reconstruction with simulator. Leveraging the
MetaDrive [2] simulator and ScenarioNet [3] data plat-
forms, we aggregate nuScenes [1] and Waymo [4]. For
simulator-reconstructed traffic scenarios, we record frames
every five steps (0.5 seconds wall time) until the end. We set
a camera with a 60-degree field-of-view and 1920 × 1080
resolution to extract rendering. At each simulation step, we
record the following information about the ego and objects

within 75 meters of the ego:

Information Recorded per Frame:
id, assigned by the simulator.
color, bound to the 3D asset.
height, bound to the 3D asset.
type, bound to the 3D asset.
bounding box in world coordinates.
heading vector in world coordinates.
speed of the object in meters per second (m/s).
position of the center point in world coordinates.
ego camera that observes the vehicle (if any).
visibility of the object to the ego vehicle.
collided objects (if any) at this moment.

Note that if an object is ”visible,” the camera must cap-
ture at least 1,200 pixels of its body. This is implemented
by assigning an ID color to each active object in the simu-
lation, and we use a special instance segmentation camera
(the same intrinsic and placement as the capturing camera)
to capture the ID-color-based rendering. The traffic col-
lected has the following statistics.

Constuction of 3D scene graphs. Each scene graph com-
prises nodes connected by directed edges representing rel-
ative spatial relationships. Each node corresponds to a vis-
ible object from the frame information recorded from the
previous step, and intrinsic properties (e.g.color, height) are
contained in the node. Given a reference vector V, we deter-
mine the relative spatial relationships between current node
A and node B by:

Relative Spatial Relationships(box
A,B;front vector V):

left or right. Refer to Fig. 1, and we determine the
leftmost and rightmost vertices of bounding box A
using the reference vector V as the front direction.
Then, if all vertices of bounding box B are to the
left of the leftmost vertex of A, then we consider B’s
sidedness to be ”left” (and similarly for sidedness to
be ”right”). If bounding box B satisfies neither of the
two conditions, then we consider B’s “sidedness” to
be “none”.

front or back. We determine this relationship sim-
ilarly to determining “left” or “right”, with the mod-
ification that V is the left direction.

This reference vector V is the heading of the ego vehicle
when determining “left or right”, and it’s rotated 90 degrees
counterclockwise with respect to the yaw axis when deter-
mining “front or back”. Once we have the two values for



Figure 1. Top-down illustration of sidedness. We demand all
vertices of box B reside in the “LEFT” region of A for B to be
considered “to the left of” (and similarly for “to the right of”) A.

“left or right” and “front or back”, we draw the correspond-
ing directed edge from A to B from the following:

Named Spatial Edges:
l, corresponding to “to the left of.”
lb, corresponding to “to the left and behind.”
lf, corresponding to “to the left and in front of.”
b, corresponding to “behind.”
f, corresponding to “in front of.”
r, corresponding to “to the right.”
rb, corresponding to “to the right and behind.”
rf, corresponding to “to the right and in front of.”

For example, if “l” edge is chosen, this means “B is to
the left of A.”

1.2. Set-of-Mark Prompting

Figure 2. Instance segmentation masks. Approximated instance
segmentation is generated for real images from the nuScenes
dataset. Simulated images are paired with precise instance seg-
mentation.

From Sec. 1.1, we have collected image observations and
the corresponding instance segmentation in approximated
boxes(nuScenes images) or shape-precise masks(simulated
images), as shown in Fig. 2. Then, we run the algorithm

illustrated in Fig. 3 adopted from the original Set-of-Mark
paper [5] to determine the appropriate position for object
labels:

Figure 3. Labeling algorithm adopted from the Set-of-Mark
paper. Credit to the Set-of-Mark authors.

The Set-of-Mark paper suggested various schemes to
perform the visual prompting. For example, using instance
segmentation masks and contours are both valid schemes
to improve the visual grounding capabilities of vision-
language models (VLMs). As mentioned in the main pa-
per, we conducted an ablation study on different prompt-
ing schemes to determine the optimal scheme for refer-
ral clarity using labels. Using Qwen2 [6] as the zero-
shot evaluating model, we fix the prompting scheme with
bounding-box annotations, black text background color,
and a text size of 1.00 (to reduce label occlusions). The
bounding boxes and texts use colors identical to that of
the instance segmentation masks of corresponding objects.
We use cv2.rectangle to draw the bounding boxes
onto original images with thickness = 2, and we use
cv2.putText with font size = 1 and thickness
= 2. In addition, we slightly relocate the labels if their
corresponding 2D bounding boxes enclose regions less than
1,600 pixels. This is to ensure the visibility of highlighted
objects after the visual prompting. The concrete code im-
plementations will be released.

1.3. Question-Answer Generation

1.3.1. Question Generation

MetaVQA adopts a template-based question generation
process. Each type of question is bonded to a single tem-
plate with varying numbers and types of parameters to be
replaced with concrete values. We categorize questions
into “non-parameterized” and “parameterized ” based on
the number of parameter types in the template.



Parameterized question generation. Parameters are
present for the templates of these questions. These param-
eters will be replaced upon question generation with con-
crete values selected from corresponding parameter spaces,
the summary of which is provided in Fig. 4. The generation
process for a parameterized question is illustrated in Fig. 5:
the template of identify distance contains a single
<id1> parameter, the parameter space of which is all valid
labels generated from the Set-of-Mark prompting. In this
example, <id1> is replaced by the randomly selected label
<0>. Additionally, multiple parameters belonging to differ-
ent types can co-exist in a single-question template. Refers
to Fig. 6 for an illustration. Observe how concrete values
for parameters are sampled from the parameter spaces.

Figure 4. Parameter space summary. Note that space of <id*>
is scenario-dependent, namely, all valid labels.

Non-parameterized question generation. These ques-
tions don’t have any parameters in their templates, as they
demand the VLMs to examine all present objects in ob-
servations before answering. An example can be found in
Fig. 7. Therefore, no computation is done in the question
generation phase.

1.3.2. Answer Generation
A unique query program is selected to generate answers for
each type of question. Refer to Fig. 5, Fig. 6, and Fig. 7
for examples. Upon the execution of these query programs,
the concrete answers are extracted utilizing scenario infor-
mation for simulated dynamics. Note that both the question-
answer pairs at this stage are not formulated in the multiple-
choice setting, and the next stage will reformat the pairs.

1.3.3. Post-processing
At this point, question-answer pairs are already generated.
The remaining works are (1) the generation of non-answer
candidates for multiple-choice setup (2) the creation of the
multiple-choice description strings which map choices with
concrete answer candidates, (3) the creation of optional
“explanation” strings to elevate VLMs’ learning. Each
question has different search spaces for non-answer can-
didates. As shown in Fig. 5, identify distance’s

candidate space is the <dist> space listed in Fig. 4,
while that of embodied sideness is a subset of <pos>
space, shown in Fig. 6. When applicable, non-answer
candidates are selected to challenge the evaluated VLMs
maximally. For example, candidate generation in question
identify type prioritizes ones present in the scenarios
on which the question is constructed. After the candidates’
generation, they are put into multiple-choice format as suf-
fixes to the original question, and the answer is replaced
by the answer choice. The optional “explanation” strings
(used interchangeably with “reasoning”) are also program-
matically created, depending on the choice-candidate map-
ping. Complete implementation will be included in the re-
leased codebase.

2. MetaVQA Dataset
2.1. Dataset Composition
Fig. 8 list all question types divided along two dimensions.
The horizontal dimension indicates the objects that need
to be analyzed to answer the question successfully, and
the vertical dimension indicates which facet of embodied
scene understanding is evaluated. Detailed descriptions–
along with two examples using both simulated and real
observations–for each question type can be found at the end
of this document in Sec. 3.3.2.

2.2. Zero-shot Answerability with Set-of-Mark
Prompting

2.2.1. Human Evaluation
Before large-scale dataset generation, we first prepare a
small questionnaire to examine the answerability and the
quality of the MetaVQA Dataset. Since this is a pilot study,
we utilize a Set-of-Mark prompting scheme slightly differ-
ent from the final MetaVQA Dataset: contours are drawn
around objects, and the background color of each label is
determined by the corresponding text color following the
original paper [5]. We sampled 35 questions with distinct
types generated from a single keyframe to speed up the eval-
uation process. Six participants report an average accuracy
of 88.05% on the 35 questions with a standard deviation of
7.54%. The best-performing participant achieves a 94.2&
accuracy, while the worst-performing participant reports a
74.2% accuracy. An example question from the question-
naire is illustrated in Fig. 9.

Noticeably, participants struggle with question 19 (5 out
of 6 wrong) and question 29 (4 out of 6 wrong), zero-
indexed. The former is of type “order leftmost”, while the
latter is of type ”describe distance.” For question 19 illus-
trated in Fig. 10, the participants report–after question-
naire submission–confusion on whether the answer should
be deduced using pixel-position ordering of the labels or
the world-position ordering of objects. We speculate this



Figure 5. Question-Answer generation of parameterized questions with only one type of parameter.

Figure 6. Question-Answer generation of parameterized questions with distinct parameters.

Figure 7. Question-Answer generation of non-parameterized questions.

confusion leads to the participants’ overwhelming mistakes
on this question. In addition, since this question involves
objects very distant from the ego vehicle, the question
is challenging due to the linear perspective. This might
also cause conflicted participants’ responses to question 29
shown in Fig. 11. Accounting for these factors, we refine
the generation process for the final version of MetaVQA
Dataset by choosing clearer phrasing and enforcing bet-
ter visibility constraints on objects (for example, increas-
ing the minimum observable pixels). Despite these issues,
novice participants still report high test accuracies, and we
conclude that the MetaVQA Dataset is intuitive to answer
and clear in answering guidelines. Therefore, we argue that
the MetaVQA Dataset is suitable for zero-shot plug-in-and-
play evaluation of the embodied scene understanding enter-
tained by general-purpose vision language models.

2.3. Effect of Set-of-Marks Prompting Scheme

The Set-of-Mark [5] paper proposes numerous prompt-
ing schemes, from using instance-segmentation masks to
bounding boxes. In addition, the text size and background
colors are also varied. We perform a grid search with obser-
vation generated using different prompting schemes while
keeping the base images and object-to-label mapping iden-
tical across sets, and we use Qwen2 [6]–the VLM with
the best grounding capability as discussed in the main pa-
per. Referring to Tab. 1, Qwen2 achieves the best over-
all and grounding performance on images annotated with
bounding boxes with labels of text size 1.25 and black for
background colors. In addition, we observe that text size
seems to have a trivial impact on the final performance.
Based on these observations, we fixed the annotation style
of MetaVQA with bounding-box annotations, black text
background color, and a text size of 1.00 (to reduce label
occlusions).
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Figure 8. Question taxonomy of MetaVQA Dataset. Notice that questions are further blocked by black dotted contours to denote similarity
in the formulation (illustrated collectively in Sec. 3.3.2).

Figure 9. Sample question from the questionnaire. The answer
is (C).

3. Benchmark Results

3.1. Definitions

We present the naming conventions used in this work in this
subsection.

Figure 10. Question 19 from the questionnaire. The answer
is (A). Ambiguous wording and distant objects lead to common
mistakes by participants.

3.2. Visual Question Answering
We benchmark the performance of various baselines [6–
10, 12] on the withheld test set (“overall”) mentioned in
the main paper. Furthermore, We provide detailed perfor-
mances of baselines on (1) test questions with simulated



Figure 11. Question 29 from the questionnaire. The answer
is (D). Some referred objects show limited visibility, leading to
common errors.

Text Size Form Background Overall Grounding

0.75 box white 0.440 0.867
0.75 box black 0.457 0.933
0.75 mask white 0.422 0.467
0.75 mask black 0.420 0.533
0.75 contour white 0.430 0.467
0.75 contour black 0.420 0.733
1.25 box white 0.437 0.800
1.25 box black 0.472 0.933
1.25 mask white 0.440 0.333
1.25 mask black 0.437 0.333
1.25 contour white 0.437 0.400
1.25 contour black 0.422 0.600

Table 1. Effect of Set-of-Marks Annotations. We tested different
annotation styles, text sizes, and background colors while fixing
the model (Qwen2) and the numerical labeling, base images, and
grounding questions.

Abbreviation Checkpoint

LLaVA-NeXT llava-1.6-vicuna-7b [7]
LLaVA-OneVision llava-onevision-7b-ov [8]
GPT-4o GPT-4o [9]
Qwen2 qwen2-vl-7b-instruct [6]
Llama3.2 llama-3.2-11B-Vision-Instruct [10]
InternVL2-4B InternVL2-4B [11]
InternVL2-8B InternVL2-8B [11]

Table 2. Model Abbreviations. These mappings are used consis-
tently throughout the main paper and the supplementary materials.

observations (“sim” split) (2) test questions with real obser-
vations (“real” split). To save space, we used abbreviations
illustrated in Tab. 2 for baselines in these benchmark tables.

3.2.1. Response Parsing
We establish a unified parsing standard using regular ex-
pression (regex) matching for the token sequences gener-
ated by all VLMs. If only a singular token is generated, we
use this character as the option. If this is not the case, we
search for option keywords provided in the multiple-choice
questions. In cases of multiple matches, We select the last
matched string as the model’s output upon empirical exami-
nations of the VLMs’ raw outputs. If there is still no match,
the parser will look for single characters enclosed by paren-

theses. If all searches return ill-composed results (empty
match or illegal character), we consider the parsing to be a
failed case. In the closed-loop evaluations, if a parse failure
happens, a randomized action is taken. Code implementa-
tion will be available in the Github repository.

3.2.2. Benchmarks on Test Set
Tab. 3 presents the performance in “spatial reasoning” of

the baseline VLMs on the withheld test set. Tab. 6 presents
the performance in “embodied understanding” on the with-
held test set. Tab. 7 presents the grounding performance of
baseline VLMs, categorized according to the test set com-
positions.

3.2.3. Benchmarks on Real Test Split
Tab. 4 presents the performance in “spatial reasoning” of

the baseline VLMs on the “real” split of withheld test set.
Tab. 8 presents the performance in “embodied understand-
ing” on the “real” split.

3.2.4. Benchmarks on Simulated Test Split
Tab. 5 presents the performance in “spatial reasoning” of

the baseline VLMs on the “sim” split of withheld test set.
Tab. 9 presents the performance in “embodied understand-
ing” on the “sim” split.

3.3. Closed-loop Evaluation
3.3.1. Task Formulation
Interaction Paradigm. We use the MetaDrive [2] simu-
lator, which provides accurate vehicle dynamics simulation
for closed-loop evaluations. VLMs are deployed as driv-
ing agents in imported scenarios using [3]. At every five
simulation steps (0.5 seconds wall time), the tested VLM
is provided with (1) a Set-of-Mark annotated observation
captured from the ego’s front camera in 1600× 900 resolu-
tion and (2) a driving prompt containing current navigation
command and allowed discrete action space. The model
will analyze the combined input and select the best action
from available options. The chosen action will be fed into
the simulation, and it will be repeated for the next 0.5 sec-
onds (5 steps in simulation time) until the next inference
step. Fig. 12 illustrates this process. The simulations termi-
nate when their time horizons are reached or when the ego
vehicle wanders off drivable regions.

Very rarely, the tested VLM will generate an in-
valid response according to the parser mentioned in
Sec. 3.2.1. In this situation, we fix the chosen action as
“KEEP STRAIGHT” such that the speed and the heading
of the ego vehicle will remain roughly identical.

Navigation command. At each inference step, the navi-
gation command is recomputed to adjust for the current po-
sition of the ego vehicle. The command follows the follow-
ing form:
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random 0.287 0.267 0.218 0.245 0.254 0.510 0.240 0.308 0.241 0.535 0.467 0.289 0.215 0.250 0.250 0.234 0.213 0.272 0.265 0.253 0.281 0.221 0.246 0.315
LLaVA-NeXT [7] 0.190 0.183 0.239 0.149 0.060 0.206 0.201 0.147 0.139 0.450 0.467 0.054 0.267 0.000 0.297 0.092 0.312 0.203 0.272 0.049 0.127 0.295 0.113 0.000
LLaVA-OneVision [8] 0.422 0.233 0.401 0.226 0.590 0.779 0.338 0.171 0.646 0.599 0.948 0.126 0.600 0.674 0.324 0.454 0.255 0.319 0.398 0.444 0.382 0.326 0.669 0.460
GPT-4o [9] 0.489 0.254 0.585 0.234 0.575 0.740 0.403 0.360 0.639 0.609 0.887 0.329 0.541 0.663 0.385 0.560 0.355 0.440 0.626 0.340 0.342 0.593 0.599 0.516

Qwen2 [6] 0.411 0.221 0.408 0.381 0.687 0.186 0.390 0.199 0.658 0.530 0.396 0.220 0.644 0.808 0.385 0.539 0.340 0.319 0.386 0.173 0.351 0.474 0.669 0.492
Qwen2-finetuned 0.740 0.550 0.761 0.891 0.843 0.627 0.766 0.404 0.899 0.540 0.821 0.487 0.904 0.902 0.770 0.922 0.801 0.431 0.985 0.759 0.325 0.979 0.873 0.831

Llama3.2 [10] 0.442 0.308 0.577 0.207 0.507 0.446 0.351 0.226 0.633 0.490 0.915 0.484 0.511 0.699 0.365 0.461 0.355 0.310 0.519 0.302 0.382 0.330 0.570 0.677
Llama3.2-finetuned 0.610 0.667 0.465 0.544 0.821 0.873 0.630 0.435 0.905 0.688 0.953 0.787 0.126 0.804 0.514 0.858 0.099 0.207 0.658 0.772 0.215 0.512 0.817 0.758

InternVL2-8B [12] 0.476 0.421 0.317 0.241 0.664 0.858 0.370 0.363 0.601 0.569 0.953 0.415 0.504 0.652 0.372 0.482 0.227 0.349 0.568 0.364 0.338 0.418 0.648 0.492
InternVL2-8B-finetuned 0.813 0.600 0.669 0.904 0.866 0.868 0.734 0.647 0.804 0.678 0.953 0.834 0.741 0.899 0.696 0.865 0.745 0.776 0.927 0.759 0.794 0.940 0.824 0.863

Table 3. VQA benchmarks (Overall-Spatial). Per-question accuracies are evaluated on the withheld test set.
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random 0.296 0.237 0.188 0.250 0.203 0.500 0.362 0.317 0.194 0.602 0.490 0.279 0.210 0.280 0.246 0.236 0.185 0.287 0.256 0.310 0.286 0.245 0.244
LLaVA-NeXT 0.187 0.211 0.219 0.167 0.017 0.209 0.241 0.106 0.129 0.470 0.529 0.024 0.290 0,000 0.279 0.036 0.370 0.218 0.250 0.069 0.114 0.224 0.178
LLaVA-OneVision 0.452 0.228 0.406 0.294 0.542 0.764 0.466 0.174 0.694 0.614 0.941 0.091 0.629 0.826 0.246 0.364 0.185 0.366 0.494 0.362 0.381 0.476 0.778
GPT-4o 0.509 0.246 0.703 0.256 0.508 0.836 0.328 0.323 0.677 0.566 0.873 0.321 0.645 0.770 0.377 0.545 0.315 0.396 0.685 0.276 0.314 0.633 0.733

Qwen2 0.405 0.158 0.469 0.439 0.610 0.218 0.431 0.518 0.710 0.518 0.373 0.176 0.710 0.907 0.361 0.527 0.278 0.366 0.315 0.155 0.286 0.531 0.667
Qwen2-finetuned 0.723 0.649 0.781 0.894 0.780 0.591 0.759 0.342 0.871 0.651 0.745 0.515 0.919 0.963 0.770 0.891 0.833 0.406 0.976 0.621 0.295 0.986 0.844

Llama3.2 0.464 0.368 0.594 0.189 0.475 0.436 0.362 0.211 0.629 0.578 0.931 0.539 0.548 0.832 0.410 0.400 0.296 0.317 0.583 0.207 0.352 0.374 0.622
Llama3.2-finetuned 0.627 0.728 0.578 0.522 0.729 0.864 0.500 0.422 0.871 0.590 0.941 0.824 0.048 0.938 0.475 0.818 0.019 0.208 0.667 0.810 0.219 0.735 0.867

InternVL2-8B 0.516 0.283 0.328 0.283 0.644 0.873 0.379 0.675 0.694 0.675 0.941 0.424 0.548 0.795 0.410 0.400 0.278 0.376 0.708 0.259 0.305 0.503 0.711
InternVL2-8B-finetuned 0.838 0.640 0.672 0.878 0.847 0.864 0.793 0.696 0.790 0.735 0.941 0.640 0.823 0.950 0.803 0.909 0.759 0.822 0.958 0.810 0.781 0.952 0.911

Table 4. VQA benchmarks (Real-Spatial). Per-question accuracies are evaluated on the “real” split of the withheld test set.
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random 0.281 0.294 0.244 0.242 0.293 0.521 0.167 0.298 0.271 0.487 0.445 0.304 0.219 0.209 0.253 0.233 0.230 0.260 0.270 0.221 0.276 0.196 0.247 0.315
LLaVA-NeXT 0.192 0.159 0.256 0.138 0.093 0.202 0.177 0.198 0.146 0.437 0.409 0.098 0.247 0.000 0.310 0.128 0.276 0.191 0.287 0.038 0.138 0.370 0.082 0.000
LLaVA-OneVision 0.398 0.238 0.397 0.185 0.627 0.798 0.260 0.168 0.615 0.588 0.955 0.179 0.575 0.461 0.379 0.512 0.299 0.282 0.332 0.490 0.382 0.167 0.619 0.460
GPT-4o 0.474 0.262 0.487 0.221 0.627 0.628 0.448 0.405 0.615 0.639 0.900 0.339 0.452 0.513 0.391 0.570 0.379 0.473 0.586 0.375 0.366 0.551 0.536 0.516

Qwen2 0.415 0.278 0.359 0.346 0.747 0.149 0.365 0.282 0.625 0.538 0.418 0.286 0.589 0.670 0.402 0.547 0.379 0.282 0.434 0.183 0.407 0.413 0.670 0.492
Qwen2-finetuned 0.754 0.460 0.744 0.889 0.893 0.670 0.771 0.481 0.917 0.462 0.891 0.446 0.890 0.817 0.770 0.942 0.782 0.450 0.992 0.837 0.350 0.971 0.887 0.831

Llama3.2 0.424 0.254 0.564 0.218 0.533 0.457 0.344 0.244 0.635 0.429 0.900 0.402 0.479 0.513 0.333 0.500 0.391 0.305 0.475 0.356 0.407 0.283 0.546 0.677
Llama3.2-finetuned 0.596 0.611 0.372 0.557 0.893 0.883 0.708 0.450 0.927 0.756 0.964 0.732 0.192 0.617 0.540 0.884 0.149 0.206 0.652 0.750 0.211 0.275 0.794 0.758

InternVL2-8B 0.444 0.413 0.308 0.215 0.680 0.840 0.365 0.450 0.542 0.496 0.964 0.402 0.466 0.452 0.345 0.535 0.195 0.328 0.471 0.423 0.366 0.326 0.619 0.492
InternVL2-8B-finetuned 0.793 0.563 0.667 0.919 0.880 0.872 0.698 0.588 0.813 0.639 0.964 0.795 0.671 0.826 0.621 0.837 0.736 0.740 0.906 0.731 0.805 0.928 0.784 0.863

Table 5. VQA benchmarks (Sim-Spatial). Per-question accuracies are evaluated on the “sim” split of the withheld test set.

your final destination is at
<distance> to <position> at this
moment.

Here, the <distance> and <position> parame-
ters will be replaced with concrete values chosen from the
discrete vocabulary for spatial information mentioned in
Sec. 1.3.

Action space. The actions in the driving prompts are stat-
ically mapped to low-level control signals to MetaDrive.
MetaDrive receives normalized action as input to control
the ego vehicle: a = [a1, a2]

T ∈ [−1, 1]2. At each simu-
lation time step, MetaDrive converts the normalized action
into the steering us (degree), acceleration ua (hp) and brake
signal ub (hp) in the following ways: (i) us = Smaxa1,
(ii) ua = Fmax max(0, a2), (iii) ub = −Bmax min(0, a2),
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random 0.382 0.255 0.498 0.521 0.348 0.504
LLaVA-NeXT 0.419 0.159 0.489 0.303 0.652 0.384
LLaVA-OneVision 0.746 0.442 0.923 0.976 0.794 0.961
GPT-4o 0.764 0.785 0.719 0.893 0.732 0.873

Qwen2 0.649 0.451 0.836 0.259 0.804 0.482
Qwen2-finetuned 0.948 0.998 0.879 0.817 1.000 0.894

Llama3.2 0.536 0.332 0.650 0.517 0.574 0.849
Llama3.2-finetuned 0.944 0.962 0.846 0.997 0.999 0.961

InternVL2-8B 0.711 0.620 0.923 0.914 0.509 0.961
InternVL2-8B-finetuned 0.926 0.807 0.953 0.997 1.000 0.961

Table 6. VQA benchmarks (Overall-Embodied). Per-
question accuracies are evaluated on the withheld test set.

Grounding Questions

Model Overall Real Sim

random 0.268 0.257 0.280
LLaVA-NeXT 0.248 0.229 0.271
LLaVA-OneVision 0.728 0.827 0.615
GPT4-o 0.831 0.888 0.766

Qwen2 0.874 0.859 0.890
Qwen2-finetuned 0.972 0.992 0.950

Llama3.2 0.790 0.855 0.716
Llama3.2-finetuned 0.923 0.944 0.899

InternVL2-8B 0.702 0.783 0.610
InternVL2-8B-finetuned 0.916 0.948 0.881

Table 7. VQA benchmarks (Grounding). Per-question accu-
racies are evaluated on the withheld whole test set, “real” split
of the test set, and “sim” split of the test set.

Embodied Questions (Real)
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random 0.372 0.248 0.498 0.487 0.345 0.467
LLaVA-NeXT 0.414 0.189 0.445 0.342 0.647 0.327
LLaVA-OneVision 0.735 0.430 0.905 0.980 0.795 0.980
GPT-4o 0.762 0.784 0.706 0.895 0.739 0.873

Qwen2 0.653 0.446 0.852 0.322 0.796 0.453
Qwen2-finetuned 0.946 0.999 0.875 0.789 1.000 0.887

Llama3.2 0.542 0.339 0.654 0.566 0.580 0.867
Llama3.2-finetuned 0.947 0.969 0.844 0.993 0.999 0.980

InternVL2-8B 0.720 0.615 0.905 0.895 0.576 0.980
InternVL2-8B-finetuned 0.919 0.780 0.956 0.993 1.000 0.980

Table 8. VQA benchmarks (Real-Embodied). Per-question
accuracies are evaluated on the “real” split of the withheld test
set. Question types are shortened for formatting.

Embodied Questions (Sim)
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random 0.395 0.264 0.497 0.558 0.353 0.545
LLaVA-NeXT 0.426 0.12 0.542 0.261 0.660 0.448
LLaVA-OneVision 0.760 0.457 0.945 0.971 0.793 0.940
GPT-4o 0.767 0.786 0.734 0.891 0.722 0.873

Qwen2 0.645 0.457 0.817 0.188 0.815 0.515
Qwen2-finetuned 0.949 0.998 0.883 0.848 1.000 0.903

Llama3.2 0.527 0.321 0.644 0.464 0.565 0.828
Llama3.2-finetuned 0.939 0.952 0.847 1.000 1.000 0.940

InternVL-8B 0.699 0.627 0.945 0.935 0.418 0.940
InternVL-8B-finetuned 0.936 0.843 0.949 1.000 1.000 0.940

Table 9. VQA benchmarks (Sim-Embodied). Per-question
accuracies are evaluated on the “sim” split of the withheld test
set. Question types are shortened for formatting.

wherein Smax (degree) is the maximal steering angle, Fmax

(hp) is the maximal engine force, and Bmax (hp) is the max-
imal brake force. For fair and replicable experiments, we
use identical vehicle configurations(for example, maximum
engine force) across different trials.

We conducted grid searches to fix the suitable set of ac-
tions. For each candidate, we reconstruct real-world driv-
ing trajectories as action sequences with only allowed ac-
tion provided by the candidate. These sequences are com-
puted greedily (and repeated) at every five simulation steps,
following the same inference frequency as the closed-loop
evaluation. The optimal action at a particular step is decided
according to the resulting deviation from the original trajec-
tories if the action is executed. This sequence-building is
autoregressive, meaning that previous optimal actions(and
their generated trajectories) affect the decision on later op-
timal actions. We fix the current action space as it leads to
the best reconstruction quality.

Test scenarios. We tailor 120 diverse scenarios to eval-
uate VLMs’ embodied scene understanding holistically.

These scenarios include 60 from the nuScenes dataset and
the other 60 selected from a corpus of safety-critical situa-
tions generated using CAT [13]. For each of the 60 safety-
critical scenarios, an adversarial agent will attempt to run
into the ego vehicle, and we ensure the observability of ad-
versarial agents.

3.3.2. Metrics
Route Completion The ratio of the traveled distance
against the length of the complete route averaged across
scenarios.

Collision Rate The ratio of scenarios where the ego vehi-
cle collides with any other object.

Off-Road Rate The ratio of scenarios where the ego ve-
hicle leaves drivable regions.

Final Displacement Error (FDE) The L2 distance be-
tween the final position of the ego vehicle from the final
destination averaged across scenarios.



Figure 12. Closed-loop evaluation paradigm.

Average Displacement Error (ADE) The mean per-step
L2 distance between the ground-truth trajectories and the
VLM-driven trajectories averaged across scenarios. If a
simulation terminates prematurely(due to VLMs driving
off-road), the last ego vehicle position is appended to align
the length of the ground-truth trajectory with the VLM-
driven trajectory.



Embodied Questions:
embodied distance. This question examines how far the ego will move from the current position, assuming
that <action> is executed over the next <duration> period and the ego’s current speed is <speed>.

Question:
Suppose our current speed is fast(30-50 mph), and we perform 
action "BRAKE" for 1.5 seconds. How far will we end up from our 
current position? Select the best option from: (A) Very close(0-2m); 
(B) Close(2-10m); (C) Medium(10-30m); (D) Far(30m-)
Explanation: N/A
Answer: C

Question:
Suppose our current speed is moderate(10-30 mph), and we 
perform action "SLOW_DOWN" for 1.0 seconds. How far will we 
end up from our current position? Select the best option from:(A) 
Very close(0-2m); (B) Close(2-10m); (C) Medium(10-30m); (D) 
Far(30m-)
Explanation: N/A
Answer: B

embodied sideness. This question examines how whether the ego will move to its left or its right(in the current
frame), assuming that <action> is executed over the next<duration> period and the ego’s current speed is
<speed>.



Embodied Questions:
embodied collision. This question examines whether the ego will collide into selected object <id1>, assum-
ing that <action> is executed over the next <duration> period and the ego’s current speed is <speed>.

predict crash ego *. This family of questions examines how whether the selected object <id1> will collide
with the ego under various conditions.



Spatial Questions:
identify distance. This question prompts VLMs to estimate the distance of the selected object <id1> from
the ego.

identify position. This question prompts VLMs to estimate the direction of the selected object <id1> from
the ego.



Spatial Questions:
identify heading. This question prompts models to estimate the heading angle of the selected object <id1>,
expressed relative to the ego’s front direction. The provided options are sufficiently distinct to avoid ambiguity.

identify color This question prompts models to select the color of object <id1>. Note that it is generated only
with simulated observations, as “color” is not annotated in the nuScenes dataset.



Spatial Questions:
identify type. This question prompts VLMs to select the most descriptive type of the selected object <id1>.

relative distance. This question prompts VLMs to select the relative distance between two objects <id1>
and <id2>.



Spatial Questions:
relative position. This question prompts VLMs to evaluate how is object <id1> related spatially with object
<id12>, expressed in the ego perspective.

relative heading. This question prompts VLMs to determine if object <id1> and <id12> are heading
towards roughly the same direction.



Spatial Questions:
relative predict crash *. This family of questions prompts VLMs to infer whether two objects <id1> and
<id12> will collect under varying assumptions.

pick closer. This question asks the VLM to select the closer object from two candidates.



Spatial Questions:
order *st. This family of questions asks the VLM to attend to multiple objects and sort their relevance by some
spatial ordering in top-down world coordinates.

describe sector. This question asks the VLM to attend to all observable objects and select the maximal object
set such that all of its members are in the specified ego’s direction from the question body.



Spatial Questions:
describe distance. This question asks VLMs to attend to all observable objects and select the maximal object
set such that all of its members are located away from the ego by the specified distance from the question body.

identify *st. This question asks the VLM to attend to all observable objects and select the leading object
according to some ordering specified in the question body.



Spatial Questions:
describe scenario. This question prompts the VLM to examine all labeled objects in the scenario. It is a
train-only question designed to boost learning performance and avoid VLM collapse.

Grounding Questions:
grounding. This question examines the visual grounding ability of the tested VLM. All non-answer options are
selected from valid labels to challenge the model maximally.
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