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Figure 7. The structure of lip and expression encoder in Emo-
tiveTalk.

6. Implementation Details of EmotiveTalk

6.1. Vision Encoders Pre-training

In talking head videos, the movements of different facial re-
gions are often coupled, which increases the difficulty of in-
dependently controlling facial expressions and lip motions.
Extracting decoupled representations related to expressions
and lips is crucial for generating controllable expressions in
talking head models. To obtain better performance and con-
trollability in emotional talking head generation, we design
lip and expression encoders to encode the lip motions and
facial expressions independently to generate lip motion la-
tent embedding l⃗v and expression latent embedding e⃗v from
self-driven video.
Architecture of Lip and Expression Encoders. Our lip
and expression encoders are based on PDFGC [41], which
demonstrates remarkable facial motion decoupling results.
We add trainable lip and expression adapters before the pre-
trained PDFGC encoder to achieve better decoupling results
based on the following tasks. Our network structure of lip
and expression encoders are illustrated in Fig. 7.
Self-driven Dropout Image Reconstruction. We have
pre-trained our lip and expression encoders on a self-driven
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Figure 8. The self-driven dropout image reconstruction training
process for lip and expression encoders pre-training.

task. We employ the ETHD backend described in Sec. 3.3
as the renderer to perform self-driven image reconstruction.
The inputs consist of a reference image and another driving
image from the same speaker. The driving image is pro-
cessed by the lip and expression encoder to obtain latent
embeddings of the lip and expression, which serve as con-
ditional inputs to the renderer.

To more effectively combine the driving representations
for controlling movements in different facial regions and
to alleviate the coupling between lips and expressions, we
adopt condition dropout training. As shown in Fig. 8, dur-
ing training, we adopt a conditional dropout strategy with
three configurations:
• Dropping the lip latent embedding l⃗v ;
• Dropping the expression latent embedding e⃗v;
• Utilizing both latent embeddings simultaneously.
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Figure 9. The structure of the audio-lip projector of V-AID in
EmotiveTalk.

When dropping the expression latent embedding, we apply
the facial mask described in Sec. 3.3 to both the ground-
truth and the generated frame latents, ensuring that parame-
ter updates focus exclusively on the reconstruction of facial
expressions. Similarly, when dropping the lip latent embed-
ding, we apply the lip mask from Sec. 3.3 to both ground-
truth and the generated frame latents and focus only on lips
reconstruction. When both latent embeddings are used si-
multaneously, we train the model to reconstruct the entire
image.

6.2. Details of V-AID
Architecture of Audio-lip Projector. Our audio-lip pro-
jector demonstrated in Sec. 3.2 leverages a Perceiver Trans-
former [19] architecture, illustrated in Fig. 9. The input to
the audio-lip projector consists of audio embedding window
Aw ∈ Rl×w×c encoded by a pre-trained Wav2Vec [2] en-
coder, where l denotes the length of audio and w denotes the
window size. The audio embedding is first passed through
an embedding layer and a linear layer for feature projec-
tion. Subsequently, the processed embedding x is fed into
the following four Perceiver Transformer blocks. In the first
block, the query input y is a learnable vector, while the keys
and values are derived by concatenating y with the original
input x. After a matrix transformation, multi-head attention
is applied along the window dimension to capture internal
relationships within the speech feature window. The out-
put of this process is further refined using a feed-forward
module. As for the following blocks, the query input is the
output of the preceding block, while the keys and values
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are constructed by concatenating the block’s output with the
original input x. This design iteratively enhances the feature
representations by leveraging both the temporal dependen-
cies and the shared information between the block outputs
and the original input. Leveraging the vision-guided train-
ing strategy described in Sec. 3.2, the model effectively
learns to map audio representation space to the correspond-
ing lip motion representation space.

6.3. Details of MEC
To facilitate the use of multiple optional emotion-driven
control sources for customizing speaking emotions, we pro-
pose a Multi-Source Emotion Control (MEC) pipeline tai-
lored to different emotion control sources. This section pro-
vides a detailed elaboration of the concepts introduced in
Sec. 3.5. Overall, the pipeline incorporates various types of
emotion control inputs, as illustrated in Fig. 10, for temporal
sources like driven video, we utilize the pre-trained expres-
sion encoder to obtain expression latent embedding from
the emotion video source as the expression-driven represen-
tation to control the expression generation, as illustrated in
Sec. 3.5. As for the utterance sources, we map the emo-
tional information to the emotion condition econd, then we
utilize the Di-CTE model in Sec. 3.2 to expanding the utter-
ance condition to temporal driven condition. In this section,
we provide a detailed explanation of how emotion condi-



tions are derived from various utterance control sources, as
illustrated in Fig. 11.
Image Source. We utilize the pre-trained expression en-
coder to obtain expression latent embedding from the driven
image as the emotion control condition, as illustrated in
Sec. 3.5.
Text Source. We utilize GPT-4o to retrieve emotion key-
words from specified emotion prompts. To facilitate this
process, we define a set of eight commonly observed emo-
tion keywords: happy, angry, sad, surprised, fear, disgusted,
worried, and neutral. Based on these keywords, we con-
struct an emotion-to-expression codebook, which stores la-
tent representations of facial expressions corresponding to
each emotion. These latent representations are extracted us-
ing the pre-trained expression encoder ( Sec. 6.1) applied
to facial images reflecting various emotional states. To en-
hance the extraction process, we prepend a retrieval prompt
to the emotion prompt, which is “Extract the keyword rep-
resenting emotion from the following sentence and return
only the keyword. The keywords should be one of happy,
angry, sad, surprised, fearful, disgusted, worried, or neu-
tral.”
Audio Source. To enable the retrieval of emotion-driven
keywords from external emotional audio input, we have de-
signed an audio-emotion retrieval module. This module em-
ploys a frozen audio encoder and a trainable speech emo-
tion recognition module. In our implementation, we uti-
lize WavLM as the audio encoder due to its superior perfor-
mance in speech emotion recognition tasks. The architec-
ture of our speech emotion recognition module leverages
the audio branch of the state-of-the-art multimodal emo-
tion recognition model. Similarly, we use an emotion-to-
expression codebook to map the retrieved emotional key-
words to latent embedding representations in the expres-
sion space. These representations serve as emotional con-
trol conditions for the subsequent Di-CTE module, enabling
the generation of sequential emotional control conditions.

6.4. Training and Inference Details
This section provides a detailed explanation of the training
and inference processes for EmotiveTalk, serving as a sup-
plementary discussion to Sec. 3.4.
Training Details. EmotiveTalk is trained using eight
NVIDIA A100 GPUs. The training of the V-AID module
takes about 20 A100 GPU hours, while the backbone net-
work requires around 200 A100 hours. Compared to the
current mainstream talking head video generation models
based on the Stable Diffusion [28] framework, our model’s
initialization weights are partially inherited from the pre-
trained Stable Video Diffusion model [5]. We also uti-
lize the pre-rained temporal VAE from Stable Video Dif-
fusion [5]. Moreover, our model achieves a balance be-
tween performance and efficiency, supporting the training

of long-duration, high-resolution videos. In our project, we
train the audio-lip projector and Di-CTE module in V-AID
in Sec. 3.2 with a learning rate of 1 × 10−4 and a batch
size of 16 for each iteration by Adam optimizer and train-
ing length of each expression-related latent Di-CTE module
is set to 220, and randomly cat the ground-truth expression
latent for a ratio of 0.8. We train the ETHD backbone net-
work under the following three configurations:
• 512-resolution: Training images and videos at a resolu-

tion of 512× 512, with 120 frames per training iteration;
• 1024-resolution: Training images and videos at a resolu-

tion of 1024×1024, with 32 frames per training iteration.
The training length of 1024-resolution is much shorter

than 512-resolution due to the training cost constraint of
high resolution. The hyperparameters for all configurations
are kept consistent. We use the Adam8bit optimizer with a
learning rate of 1× 10−5 and a batch size of 1 for each iter-
ation. And the possibility of choosing ground-truth vision
expression latents e⃗v when training is set to 0.6.
Inference Details. During inference, we first utilize the V-
AID module to generate lip-related latent embeddings la
and expression-related latent embeddings ea based on the
driving speech signal and emotional control source. For
long-time expression-related latent embedding generation,
we guide the inference process by appending the last 20
frames of the generated expression-related latent embed-
dings to the sampled noise as initialization.

Subsequently, the lip-related la and expression-driven la-
tent embeddings edri obtained in the previous step are used
as conditional inputs for the denoising process of the ETHD
backbone network. edri is choose from ea and ev based on
the category of the emotion source, ev for temporal sources
and ea for utterance sources. We adopt the DDIM inference
strategy with 25 denoising steps. The inference configura-
tions for different resolutions are as follows:
• 512-resolution: Window size of 120 frames with an over-

lap of 24 frames;
• 1024-resolution: Window size of 32 frames with an over-

lap of 12 frames.

7. Detailed Evaluations of EmotiveTalk
This section serves as an extended discussion of Sec. 4 in
the main paper, providing a more comprehensive and de-
tailed analysis and comparison of EmotiveTalk.

7.1. Evaluation Details of the Main Paper
This section serves as a detailed explanation of the evalua-
tion settings of our experiments in Sec. 4 of the main paper.
Evaluation Settings Details. We utiliz the publicly avail-
able HDTF [51] and MEAD [42] datasets for training and
evaluation. The same data split is applied to both datasets:
90% of the data is allocated to the training set for model



training, while the remaining 10% is reserved as the eval-
uation set for evaluation. To ensure robust evaluation, we
strictly maintain no overlap between the training set and
the evaluation set, and the evaluation set data is entirely
unseen during the training process. Specifically, for the
MEAD dataset, due to limitations in training length, we fil-
ter the training set by excluding sequences shorter than 120
frames (equivalent to 4.8 seconds). For evaluation, MEAD
sequences shorter than 120 frames are zero-padded to reach
this duration of 120 frames. When generating videos from
the processed test data, frames beyond the original sequence
length are removed using the ffmpeg tool, ensuring the gen-
erated videos match the length of the original ground-truth
video. We utilize these above-mentioned principles for all
our evaluations in the main paper Sec. 3.4 and following
experiments.

Comparison Settings Details. To ensure a fair compari-
son, we conduct an evaluation with audio of the same length
when comparing our model with other state-of-the-art mod-
els in Tab. 1. On the HDTF dataset, we use audio clips
of 5.76 seconds (approximately 144 frames in the ground-
truth video) to drive the portrait. Since different models
generate slightly varying numbers of frames for the same
audio length, we standardize the evaluation by reporting the
FVD metric for the first 128 frames (FVD128), along with
the average FID, and Sync-C Sync-D metrics across all gen-
erated frames. As for the E-FID metric, we follow the ap-
proach used in EMO [38], extracting 3D reconstructed ex-
pression coefficients from all frames of both the generated
and ground truth videos. The E-FID is then computed as
the FID between the expression coefficients of the gener-
ated and ground truth videos. And on the MEAD dataset,
due to the shorter video length, we standardize the evalua-
tion by generating 3.04 seconds (approximately 76 frames
in the ground-truth video) and testing the FVD metic for
the first 72 frames (FVD72). The settings of other metrics
are the same as those of the abovementioned HDTF testing.
This methodology ensures the comprehensiveness and fair-
ness of the evaluation, providing an objective comparison
across all the models.

Users Study Details. As described in Sec. 4.5, our user
study involved 26 participants, including 10 professional
video evaluation engineers and 16 graduate students with
experience in audio and video information processing. We
select 10 video clips from the partitioned HDTF evaluation
set and extract their audio to generate video clips using the
models outlined in Sec. 4.5. For audio-video driven mod-
els that require video input, such as DreamTalk [23] and
StyleTalk [22], the original videos are also provided as in-
puts to these models. In contrast, our model is operated
solely in an audio-only driven manner without incorporat-
ing additional emotion control conditions, ensuring fairness
in input information. We employed several subjective eval-

uation criteria and defined detailed quantitative metrics for
each score level in the subjective standards. These require-
ments are thoroughly documented in an evaluation guide
provided to the participants. Our designs ensured the valid-
ity and fairness of the user study.

7.2. Comparison with More Recent Methods
To further demonstrate the superiority of our method over
the latest approaches, we include a comparison with other
recent state-of-the-art methods. The baseline methods are:
EchoMimic [6], AniPortrait [44], and EMOPortraits [10].
It is worth noting that the AniPortrait comparison includes
both the audio-only driven and video-only driven modes.
However, due to the audio-video driven model for EMO-
Portraits is not open-sourced, we only compare the results
from its video-driven mode. We conducted the experiment
on the HDTF [51] test set, the testing procedure is strictly
consistent with Sec. 4.2, and the testing metrics have been
previously defined in Sec. 4.1. The results are shown in
Tab. 5.

Methods Driven FID (↓) Sync-C (↑) Sync-D (↓) E-FID (↓)
AniPortrait A 17.71 3.75 10.63 1.21
EchoMimic A 16.68 6.74 8.49 0.78

Ours A 16.64 8.24 7.09 0.54

EMOPortraits V 19.68 7.38 7.65 0.44
AniPortrait V 17.34 6.82 7.96 0.40

Ours A+V 16.09 8.41 7.11 0.34

Table 5. Comparison with recent methods on HDTF dataset. “A”
denotes audio-only driven, “V” denotes video-only driven and
“A+V” denotes audio-video driven. “↑” indicates better perfor-
mance with higher values, while “↓” indicates better performance
with lower values.

The results demonstrate that our approach outperforms
the latest methods in audio-only driven tasks, particularly in
terms of lip synchronization and expression similarity. Fur-
thermore, for video-driven tasks where reference videos are
available, our method, which can integrate audio informa-
tion and video information, also surpasses the latest video-
only driven approaches. These aforementioned results serve
as a supplementary addition to Tab. 1 of the main paper, fur-
ther substantiating the superiority of our method in generat-
ing expressive talking heads.

7.3. Qualitative Ablation Study on V-AID
Sec. 4.3 of the main text presents a quantitative ablation ex-
periment on the proposed V-AID module in Tab. 2. As a
supplement, we also conduct a qualitative ablation of the
V-AID module to further test the effect of introducing the
V-AID module. In our study, we employed 18 samples of
paired reference images and audio clips to generate talking
head videos using the following two methods:



Methods Lip-Sync (↑) Exp-Q (↑) Preference (↑)

end-to-end (w/o V-AID) 3.98 3.59 0.21 (21%)
w/ V-AID 4.28 4.19 0.79 (79%)

Table 6. User study on the ablation of V-AID module. The study
involved 20 participants to evaluate 18 paired samples.

Modules V-AID VAE (decoder) Backbone (ETHD)

TFLOPs 0.45 180.51 3668.16

Table 7. Computation complexity of each module of EmotiveTalk.

• End-to-end (w/o V-AID): End-to-end driven mode with-
out the V-AID module;

• w/ V-AID: Driven with the V-AID module.
Then, we conducted a user study of 20 participants. For
each method, the participant is required to give a rating
(from 1 to 5, 5 is the best) for each generated sample on two
aspects: (1) the lip sync quality (Lip-Sync), (2) the quality
of expressions (Exp-Q), and finally select a subjectively pre-
ferred sample from those generated using different methods
with the same paired image-audio data. The results of the
user study are shown in Tab. 6.

The results indicate that the samples generated with the
V-AID module exhibited superior generation quality, in-
cluding enhanced lip synchronization and improved expres-
sion quality, and are more preferred by the participants.
These findings demonstrate the effectiveness of the V-AID
module in the generation of expressive talking head videos.
Representative ablation samples can be found in our page.

7.4. Complexity Analysis on the Overall Frame-
work

To further investigate the impact of integrating the V-AID
module on the overall system complexity, we conducted an
additional complexity analysis of the entire system. We
utilized our overall framework to generate a 120-frame,
512x512 resolution talking head video and analysis the
computational complexity of each module during the gen-
eration process. The results are presented in Tab. 7.

Based on the results of Tab. 6 and Tab. 7, the pro-
posed V-AID module occupies only a minimal propor-
tion of the overall computational complexity. However, it
markedly enhances the quality of talking head video gen-
eration, achieving superior lip synchronization and more
expressive facial animation. This optimal balance between
computational complexity and performance effectively val-
idates the efficacy of our proposed V-AID module.

7.5. Ablation Studies on EDI
The design of the EDI module aims to achieve the automatic
removal of the emotion information from the reference im-
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Figure 12. Ablation studies on EDI block.
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Figure 13. Comparison of emotion transferring with other meth-
ods.

age while injecting target emotion information into the hid-
den states during both training and inference. This enables
the transformation of facial expressions from the reference
image to the target expression. To evaluate the effectiveness
of the EDI module, we conduct the following ablation ex-
periment. The experiments are performed on the test set of
MEAD, as described in Sec. 4, due to the extensive diver-
sity of speaker emotions in the MEAD dataset, with three
different configurations:

• Without the EDI module (w/o EDI);
• Direct injection of target emotional information (DI);
• Using the EDI module for emotional information injec-

tion (w/ EDI).



Methods
HDTF / MEAD

Driven FID (↓) FVD (↓) Sync-C (↑) Sync-D (↓) E-FID (↓)

Ours (512) A 16.64 / 53.21 140.96 / 207.67 8.24 / 6.82 7.09 / 7.43 0.54 / 0.57

Ours (1024) A 12.75 / 37.97 134.64 / 303.55 7.04 / 4.60 8.09 / 9.58 0.62 / 0.54

Ours (512) A+V 16.09 / 50.84 120.70 / 153.71 8.41 / 6.79 7.11 / 7.58 0.34 / 0.40

Ours (1024) A+V 12.68 / 38.33 147.40 / 275.04 7.85 / 5.00 7.82 / 9.55 0.42 / 0.43

Ground Truth A+V - - 8.63 / 7.30 6.75 / 8.31 -

Table 8. Comparisons of our models with different resolutions on HDTF and MEAD. “A” denotes audio-only driven and “A+V” denotes
audio-video driven. “↑” indicates better performance with higher values, while “↓” indicates better performance with lower values.

The results are presented in Fig. 12. The results demon-
strate that without utilizing the EDI module (w/o EDI), it is
challenging to achieve a transition from happy to angry in
the emotion of generated video, even when provided with
video information depicting anger. The direct injection ap-
proach (DI) fails to effectively eliminate the influence of the
happy emotion from the reference image, resulting in the
residual coupling of happiness in the generated images and
weakening the expression of anger. In contrast, the condi-
tional injection method using the EDI module effectively re-
moves the residual coupling of happiness, enabling a more
expressive and accurate transformation from the happy ref-
erence image to the generated video portraying anger.

Furthermore, to evaluate the performance of emotional
state transfer, we compare our proposed method with other
state-of-the-art emotion control methods to compare the re-
sults. Fig. 13 shows the qualitative results on emotion con-
trol generation by emotion reference video, where “ours”
denotes our model with EDI. Results show that StyleTalk
and DreamTalk fail to preserve speaker identity. They in-
advertently reveal extraneous positional information about
the reference video, as the spatial positioning and head size
in the generated video are aligned with the emotion refer-
ence video rather than maintaining consistency with the ref-
erence image. PD-FGC faces challenges in low-definition
issues in the lip region. Compared to all the methods,
our method with EDI achieves the most expressive emotion
control results while preserving speaker identity, resulting
in the best performance among all the methods.

7.6. Comparison on Different Resolutions

To quantitatively compare the impact of different resolu-
tion training strategies on EmotiveTalk, we have trained two
models at resolutions of 512 and 1024 using the configura-
tions described in Sec. 6.4. The same quantitative evalua-
tion metrics as outlined in the main paper Sec. 4 are used

Methods Params (↓) TFLOPs (↓) Time (↓)

Hallo [45] 2.17G 4388.32 501.97

Ours 1.58G 3668.16 435.18

Table 9. Comparisons of network efficiency of denoising back-
bone with diffusion-based methods. “Params” denotes the network
parameters of the backbone, “TFLOPs” denotes the computation
cost, and “Time” denotes the time cost. “↓” indicates better per-
formance with lower values.

to validate performance on the evaluation set of HDTF and
MEAD. The results are shown in Tab. 8.

The results demonstrate that models trained at different
resolutions exhibit distinct strengths across various metrics
on both datasets. The 1024-resolution model significantly
outperforms the 512-resolution model in terms of the FID
metric, highlighting the superior ability of high-resolution
training to better preserve image details. Conversely, the
512-resolution model achieves notably better performance
on lip-sync metrics, Sync-C and Sync-D in Tab. 8, under-
scoring the positive impact of long-time training on gener-
ating lip movements that are more consistent with the audio.

7.7. Comparison on Network Efficiency
To further investigate the advantages of our model’s effi-
cient design compared to other diffusion-based talking head
generation models, we conducted a comprehensive evalua-
tion from two perspectives: model parameters and inference
computational cost. We include a representative method
Hallo [45] that is similar to our method, which also employs
a 3D U-Net architecture and utilizes pre-trained models of
Stable Diffusion [28]. For a fair comparison, we test the to-
tal parameters of the backbone network and computational
flops of generating the same length of talking head video
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Figure 14. Video generation results of EmotiveTalk given different audios of variable styles.

(4.8s for each model exactly) with the inference settings of
each model, respectively. The comparison results are sum-
marized in Tab. 9.

From the metrics, it is evident that our method demon-
strates clear advantages over the mainstream reference-
denoising UNet architecture, represented by Hallo [45], in
terms of parameter count, computational cost, and genera-
tion time. Furthermore, as discussed in Tab. 1 of the main
paper, our approach also outperforms Hallo in terms of per-
formance on most of the evaluated metrics. This highlights
the efficiency of our network design, achieving a balance
between performance and efficiency while maintaining su-
perior performance.

7.8. Additional Generation Results
Results on Multiple Audio Styles. We conduct exper-
iments to compare the driving effects of different audio
styles on the same reference portrait by generating videos
using varying audio inputs. Three distinct audio styles are
employed:
• Singing: Driven by English song audio;
• Speaking: Driven by English speech recordings;
• Talking: Driven by English daily talking audio.

The results are shown in Fig. 14. In the visualized re-
sults, we observe that using singing audio introduces more
frequent blinking, expressive facial changes, and rhythmic
head movements. Using speaking driven achieves a vivid
and dynamic result, characterized by rich facial expressions,
pronounced mouth movements, and noticeable head move-
ments. On the other hand, the result driven by daily talking
audio achieves realistic and natural driving effects. These

visualized results demonstrate the effectiveness of our pro-
posed method in handling diverse audio styles for driving
animations.
Results on Multiple Portrait Styles. To further validate
the generalization capability of our proposed method across
different portrait styles, we use the same speech audio to
drive three distinct styles of portraits: photorealistic, car-
toon, and sketch, and generate speech videos correspond-
ing to each portrait. To compare the results, we visualize
frames captured at the same time stamps from the generated
videos, as shown in Fig. 15. The results demonstrate that
our method successfully produces realistic speaking videos
for all three styles. Moreover, the lip movements across the
three videos remain highly consistent at corresponding time
points, confirming the excellent generalization performance
of our method across diverse portrait styles.
Multiple Languages. Supplementary video shows that
our method generates satisfactory results with speech in
French, Chinese, English, and even minority language like
Cantonese. This is primarily attributed to the pre-trained
wav2vec encoder’s strong generalization capability across
different languages, which enhances the versatility of the
EmotiveTalk framework in generating talking head videos
across diverse linguistic contexts
Results on Multiple Emotion Generation. To further
evaluate the expressive capability of our proposed method
in controlling and generating different emotional states, we
applied the emotion control pipeline introduced in Sec. 3.5.
Using the same portrait and audio input, we controlled the
output by specifying different emotional states via text-
based control condition. Four common emotional states,
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including angry, happy, sad, and surprised, are generated in
our experiment. Frames captured at the same time stamps

from these videos are visualized for comparison, as shown
in Fig. 16.



The results demonstrate that our method can produce
vivid, natural, and realistic emotional expressions. Addi-
tionally, the lip movements across the videos remain highly
consistent at corresponding time points under varying emo-
tional conditions. This confirms that our method effectively
decouples the influence of facial expressions and lip syn-
chronization, allowing for accurate lip movements synchro-
nized with speech while transferring emotional states.

8. Limitations and Future Work
Despite EmotiveTalk’s promising advancements in expres-
sive talking head generation and emotion control ability, it
still encounters several challenges that open the way for fu-
ture research.

First, EmotiveTalk occasionally experiences motion blur
during significant body movements or dramatic facial ex-
pression changes, which reduces the resolution of the gen-
erated video. This issue is associated with motion blur in
the training data during periods of intense movement. A
potential solution could involve applying motion blur detec-
tion and video processing techniques to the original training
videos to eliminate motion blur.

Second, as there are currently no publicly available talk-
ing head video datasets with textual annotations, Emo-
tiveTalk currently supports a limited range of emotion cat-
egories controlled via textual input, focusing on discrete
emotional states. Future work could explore temporally an-
notating fine-grained facial expressions and emotion states
in the training data using Multimodal Large Language Mod-
els (MLLMs) to build a talking head dataset with fine-
grained textual annotations to support the research on text-
guided finer-grained emotional control.

Lastly, EmotiveTalk presently focuses exclusively on
controlling emotion states in talking head video generation
and does not incorporate explicit control over head move-
ments. In the generated videos, head motion primarily
arises from the sampling of the diffusion model. Future en-
hancements could include explicit control signals for head
movement, enabling precise manipulation of desired head
motion patterns.

Despite these challenges, EmotiveTalk demonstrates ex-
ceptional performance and application potential in generat-
ing stable videos with expressive and controllable facial ex-
pressions. It holds significant academic and practical value,
providing a foundation for future research in the field of
talking head generation.

9. Ethical Consideration
EmotiveTalk is capable of generating highly realistic talk-
ing head videos that are difficult to distinguish from genuine
footage, endowing it with extensive practical value. While
EmotiveTalk holds significant positive implications for so-

cial development and technological advancement, assisting
professionals in practical domains such as human-computer
interaction, remote education, and caregiving companion-
ship, the potential misuse of EmotiveTalk could lead to the
spread of misinformation. For instance, it could be ex-
ploited to create fake videos using the portraits of celebri-
ties, produce videos containing sexual innuendo or violent
content, or generate counterfeit videos for purposes of ex-
tortion. Such misuses may result in substantial negative im-
pacts, which contravene our fundamental intent of leverag-
ing artificial intelligence to enhance human creativity, drive
technological progress, and improve our society. These are
outcomes we find absolutely intolerable.

We have taken the risk of potential misuse into careful
consideration throughout the development of EmotiveTalk.
During the training phase, we meticulously curated the
training data to rigorously exclude any undesirable content
involving violence, sexual implications, or horror themes.
Furthermore, we have imposed strict limitations on the use
of EmotiveTalk. The version deployed for academic re-
search purposes is under the supervision of our risk assess-
ment team. All images and audio inputs used to generate
talking head videos undergo stringent evaluation and review
to ensure that EmotiveTalk is not utilized to produce inap-
propriate information or content. For potential future re-
leases of EmotiveTalk models intended for engineering ap-
plications, we also plan to implement a stringent review and
assessment process to guarantee that generated content re-
mains free of harmful materials. Moreover, we advocate for
research on advanced forgery detection techniques, which
can identify synthetic fake images and videos, thereby help-
ing to mitigate illegal use. We remain resolute in our com-
mitment to preventing the generation of harmful content
and mitigating adverse societal impacts, and we will fully
address and prevent the various potential misuses of Emo-
tiveTalk.
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